
Data in Cloud Computing

RDBMS

• Lots of work/research for the past 40 years
• Mostly centralized model
• Different cost model than in the past
• Different paradigm than most programming languages
• Provide a lot of guarantees

ACID

• Andreas Reuter & Theo Härder in 1983.
• Atomicity
• Consistency
• Isolation
• Durability

What now ?

• More data (like really more)
• Not all well structured/organized

• Cheap hardware and not so cheap engineers
• Many machines, 1 engineer
• The network is everywhere
• Machines or network will fail

• Is ACID possible in a distributed environment ?

CAP – 1

• Eric Brewer, PODC keynote (2000)
• 3 properties to build large scale distributed systems
• Consistency
• Availability
• Partition Tolerance

CAP - 2

https://towardsdatascience.com/cap-theorem-and-distributed-database-management-systems-5c2be977950e

https://towardsdatascience.com/cap-theorem-and-distributed-database-management-systems-5c2be977950e

CAP in the wild

• A distributed DB on a single cluster
• C-A

• Domain Name Server
• A – P

• A multi-site distributed DB
• C - P

BASE

• ACID is not possible in a distributed environment
• Move to less strict guarantees
• Basically Available
• Soft-State
• Eventual Consistency

What is consistency

• A contract between a database and a programmer
• Follow some rules and your data will be consistent

• Many different models
• Strict, sequential, causal, eventual…
• Ordered from strong to weak

Strict consistency

• A write to a variable is instantaneously seen by all processors

https://en.wikipedia.org/wiki/Consistency_model#Strict_consistency

https://en.wikipedia.org/wiki/Consistency_model

Atomic Consistency

• Operations are executed in the same order on all machines
• Uses a global clock
• Same order as they were emitted

• Always deterministic

Sequential Consistency

• Weaker than strict consistency
• All write operations by multiple processors have to been seen in the

same order
• No specific order initially
• Not necessarily consistent between various executions

• Sequential consistency + time => atomic consistency (e.g Google
Spanner)

Eventual Consistency

• Weak consistency
• Given enough time without update, all read access to a variable will return

the latest value.

NoSQL databases

Principles

• Not Only SQL
• All follow the BASE principles
• Provides various properties under CAP
• Designed to scale horizontally
• Replication
• Data is copied on multiples machines

• Various designs

Key-Value

• Data are stored as unique key-value pairs
• Very simple API
• Get, put, delete
• Range queries often not supported

• Usually relies on consistent hashing
• Spread keys among multiples machines
• Copy pairs for redundancy

• Examples : DynamoDB, Redis, Riak

Wide Column

• Use row/columns to store data
• Like RDBMS except columns have usually no fixed type
• Number of columns can vary from row to row

• Can be seen as a 2D key-value store

• Examples : Apache Hbase, Cassandra

https://pandaforme.gitbooks.io/introduction-to-cassandra/understand_the_cassandra_data_model.html

https://pandaforme.gitbooks.io/introduction-to-cassandra/understand_the_cassandra_data_model.html

Document

• Data are stored as documents (XML, JSON…)
• Rich data structures
• Support versioning

• An API allows complex queries

• Examples : CouchDB, MongoDB

Graph Oriented

• Consider data as graphs
• Introduce relations more complex than key-value

• Examples : Neo4J, RedisGraph

https://neo4j.com/developer/graph-db-vs-nosql/

https://neo4j.com/developer/graph-db-vs-nosql/

Replication and consistency

Definitions

• Copies of a data are called replicates
• A group of machines storing the same data is called a replication

group
• Different ways to update replicates
• Active replication

• Passive synchronous replication

• Passive asynchronous replication

• Optimistic replication

Ensuring consistency with optimistic
replication
• Any machine can update data
• Should work properly most of the times
• Except for network delays and partitioning.

• 2 difficulties
• Detect inconsistency
• Solve inconsistency

Version clocks

• Inspired by Vector Clocks
• Inspired by Lamport’s clocks.

• Associate an update vector to each data
• Vector size is number of machines
• Each update by client increase counter of corresponding machine
• When update sent to replica, send the whole counter

• Update is valid is received vector > local vector
• Only look at entries existing in both vectors

