Data in Cloud Computing

- Lots of work/research for the past 40 years
 Mostly centralized model —> 1 marking
- Different cost model than in the past
- Different paradigm than most programming languages
- Provide a lot of guarantees

ACID

What now?

- More data (like really more)
 - Not all well structured/organized
- Cheap hardware and not so cheap engineers
 - Many machines, 1 engineer
 - The network is everywhere
 - Machines or network will fail
- Is ACID possible in a distributed environment?

CAP - 1

- Eric Brewer, PODC keynote (2000)
- 3 properties to build large scale distributed systems
- · Consistency -> op. elementaines
- · Availability ___ dispo en plumamente
- · Partition Tolerance
 Le 545 teme doit continuer à Ponchimer quand un ou plusieurs notures sont isobs des autres.

CAP in the wild

A distributed DB on a single cluster

• C-A

Domain Name Server

• A − P

• A multi-site distributed DB

• C - P

BASE

What is consistency

- A contract between a database and a programmer
 - Follow some rules and your data will be consistent
- Many different models
 - Strict, sequential, causal, eventual...
 - Ordered from strong to weak

Strict consistency

• A write to a variable is instantaneously seen by all processors

Sequence	Strict model		Non-strict model	
	<u>P</u> 1	R2	<u>P</u> 1	<u>P</u> 2
1	W(x)1		W(x)1-	
2 -		- <i>R</i> (<i>x</i>)1		R(x)0
3				R(x)1

Atomic Consistency

Operations are executed in the same order on all machines

• Uses a global clock

Same order as they were emitted

Always deterministic

googh Spouver

Sequential Consistency

Armic

- Weaker than strict consistency
- All write operations by multiple processors have to been seen in the same order
 - No specific order initially
 - Not necessarily consistent between various executions
- Sequential consistency + time => atomic consistency (e.g Google Spanner)

Eventual Consistency

- Weak consistency
 - Given enough time without update, all read access to a variable will return the latest value.

Not only

NoSQL databases

Principles

- Not Only SQL
- All follow the BASE principles
- Provides various properties under CAP
- Designed to scale horizontally
- Replication
 - Data is copied on multiples machines
- Various designs

Key-Value

- Data are stored as unique key-value pairs
- Very simple API
 - Get, put, delete
 - Range queries often not supported
- Usually relies on consistent hashing
 - Spread keys among multiples machines
 - Copy pairs for redundancy
- Examples : DynamoDB, Redis, Riak

Pb de blais

Wide Column

- Use row/columns to store data
 - Like RDBMS except columns have usually no fixed type
 - Number of columns can vary from row to row
- Can be seen as a 2D key-value store
- Examples : Apache Hbase, Cassandra

Document

- Data are stored as documents (XML, JSON...)
 - Rich data structures
 - Support versioning
- An API allows complex queries

• Examples: CouchDB, MongoDB

```
collection
query criteria
projection
cursor modifier
```

Graph Oriented

- Consider data as graphs
 - Introduce relations more complex than key-value

• Examples : Neo4J, RedisGraph

Replication and consistency

Definitions

- Copies of a data are called replicates
- A group of machines storing the same data is called a replication group
- Different ways to update replicates

 Active replication les requises à vois les replicats + sequencies sont envoyées à vois les replicats + sequencies de la fait le mise à jour le dient est bloque -
 - Passive asynchronous replication · Optimistic replication peut occeptur une misse à

Ensuring consistency with optimistic replication

- Any machine can update data
- Should work properly most of the times
 - Except for network delays and partitioning.
- 2 difficulties
 - Detect inconsistency
 - Solve inconsistency

- Version clocks (ahe Version Vectors)
 - - Inspired by Lamport's clocks.
 - Associate an update vector to each data
 - Vector size is number of machines
 - Each update by client increase counter of corresponding machine
 - When update sent to replica, send the whole counter
 - Update is valid is received vector > local vector
 - Only look at entries existing in both vectors

* on ossocie à chaque donnée un vecteur de toille # replicat « chaque entrée = nove de modifs de la donnée. Leite par 2 méchine on envoir le rectur aux replicats DIMIN = DIMIN une machine compere son Version Noch local à celui du

Modif ecceptes si Client 1
De (T1) 1) 1,1> Mestage > Pocal. < M2,1 that I chart? Local Messey Roblemes

M1,1 > M1 client 2

