Data in Cloud Computing

RDBMS

* Lots of work/research for the past 40 years \ KA ID
 Mostl tralized model — iwch»v&/ \)(DZ//

ostly centralized mode \)(9} /ZFS
* Different cost model than in the past

e Different paradigm than most programming languages 015“\‘5) %)
* Provide a lot of guarantees 75- J"’“‘“’“"

)

ACID

e Andreas Reuter & Theo Harder in 1983.

* Atomicity Une szmb\; o\ox\/ &lc)w;» o>’

C'L AV J &

| Con5|stency L) 0.\/“\(\I&LQ Ap, \‘”w’ C‘ro—\r VLOaL

* |solation

. Durablllty‘\\, ?()V’ LS kwmé\’bb“'& CMC“-‘VWJ; OIO'W»‘
B b dans @ it clro-\/t‘./-u si W W’J“L/

Q’“—CW\QJ.) s.coruo—t» W
L> (L Lis*aq\/*\’ tl mwmY b/leusou\i*ow ‘lo‘-l/ L\’Mfwuuum,

M@Q\S\;{ ()’} ¥9.qu\

®

What now 7

* More data (like really more)
* Not all well structured/organized

* Cheap hardware and not so cheap engineers
* Many machines, 1 engineer
 The network is everywhere
* Machines or network will fail

* Is ACID possible in a distributed environment ?

CAP -1

* Eric Brewer, PODC keynote (2000)

« 3 properties to build large scale distributed systems
\

» Consistency — v\~ ¢ Vol

* Availability __< éb{a (3N ?WW‘-‘/
e Partition Toleranc

Le s> " Jot (owhinana 3(2%%\@» qams o
oV @\\W nolunds SomV }soQ's dos w\ﬁ,»&

Partition

Availability Tolerance

https://towardsdatascience.com/cap-theorem-and-distributed-database-management-systems-5c2be977950e

https://towardsdatascience.com/cap-theorem-and-distributed-database-management-systems-5c2be977950e

CAP in the wild

* A distributed DB on a single cluster
* C-A

* Domain Name Server
e A—P

A multi-site distributed DB
«C-P

BASE

* Soft-State — oV ‘i LeWAS

L \/9\(\"‘ Q,V* ¢

\% (,Q,\w S“

Lo (,L 83\‘%* X&\‘W;‘:i" Vo “L()M CW
\) vx YPW AQA’&LJ Q)(\/Q.M WY, 43

* Eventual Consistency

What is consistency

* A contract between a database and a programmer
* Follow some rules and your data will be consistent

* Many different models
* Strict, sequential, causal, eventual...
* Ordered from strong to weak

Strict consistency

* A write to a variable is instantaneously seen by all processors

Strict model Non-strict model

Sequence
P1 R2 P1 P2
1 W(x)1 W(x)1-
2 ~ R(x)1 R(x)0
3 R(x) 1
-

https://en.wikipedia.org/wiki/Consistency model#Strict consistency

https://en.wikipedia.org/wiki/Consistency_model

Atomic Consistency

* Operations are executed in the same order on all machinesz W7 P

* Uses a global clock
Cq \/ \ @L
OVfwavL

 Same order as they were emitted C«g
t / te (i

* Always deterministic O

oogls Speue

Ty X s
¢

)

‘a ?t N

¢ C Cr
X} L Ll

Sequential Consistency

AV g
* Weaker than str}fc consistency

* All write operations by multiple processors have to been seen in the
same order

* No specific order initially
* Not necessarily consistent between various executions

e Sequential consistency + time => atomic consistency (e.g Google
Spanner)

Y
)y N 1N
D D D —~ CL Ct CL

¢y O

Eventual Consistency

* Weak consistency

* Given enough time without update, all read access to a variable W|II return
the latest value.

Mo\/ O‘Noa

@jata bases

Principles

* Not Only SQL

 All follow the BASE principles

* Provides various properties under CAP
* Designed to scale horizontally

* Replication
* Data is copied on multiples machines

 Various designs

Key-Value @

e Data are stored as unique key-value pairs

* Very simple API
* Get, put, delete /7
* Range queries often not supported

* Usually relies on consistent hashing

* Spread keys among multiples machines)
* Copy pairs for redundancy \

* Examples : DynamoDB, Redis, Riak

) de \O\ oA

Wide Column

e Use row/columns to store data

* Like RDBMS except columns have usually no fixed type

* Number of columns can vary from row to row

* Can be seen as a 2D key-value store

* Examples : Apache Hbase, Cassandra

Row Column keys (or column names)
4 [
! \
v %
coI col, |] col.] coly
‘o , e |
key * ‘ * , ‘
vo || Ve || wg
Tt~
N |/

Column values (or cells)

https://pandaforme.gitbooks.io/introduction-to-cassandra/understand the cassandra data model.html

https://pandaforme.gitbooks.io/introduction-to-cassandra/understand_the_cassandra_data_model.html

Document

e Data are stored as documents (XML, JSON...)

e Rich data structures
* Support versioning

* An APl allows complex queries

db.users.insertOne(4+— collection
{
name: "sue”, 4+— field: value
age: 26, 4+— field: value document
status: "pending” 4—— field: value _ ‘
. db.users.find(<+—— collection
J { age: { %$gt: 18 } }, <«—— query criteria
) { name: 1, address: 1 } <«—— projection
).1limit(5) <«—— cursor modifier

* Examples : CouchDB, MongoDB

Graph Oriented

* Consider data as graphs
* Introduce relations more complex than key-value

* Examples : Neo4J, RedisGraph

https://neo4j.com/developer/graph-db-vs-nosqgl/

https://neo4j.com/developer/graph-db-vs-nosql/

Replication and consistency

Definitions

* Copies of a data are called replicates
* A group of machines storing the same data is called a replication

group
D (\O
e Different ways to update re Ilca es C < ;

* Active replication (> A Ul
Y MX&;: v \ovs ()p u, tﬂ-\/ -+ Sel Lowma® s

* Passive synchronous replication /w u,?? m\p Q\/ mu on (l\r P
mw.e\ou\.l_p TRV VY A
Passive asynchronous replication \
v/ ;M‘t\-\:« th A’L(’ ? Cov - 9
F u.‘,\f e LLe VWS- M & ©
? YA -

e Optimistic replication

Ensuring consistency with optimistic
replication

* Any machine can update data
* Should work properly most of the times

* Except for network delays and partitioning.
e 2 difficulties O -
o —>$

* Detect inconsistency o1

* Solve inconsistency
D ;\-f’»? —
A 9l
gc=C

o £
K=t

Version clocks (QJ,(., VAT
Ve da>

* Inspired by Vector Clocks
* Inspired by Lamport’s clocks.

* Associate an update vector to each data
* Vector size is number of machines
e Each update by client increase counter of corresponding machine
* When update sent to replica, send the whole counter

* Update is valid is received vector > local vector
* Only look at entries existing in both vectors

3o oG T Bger downt ik vedoms de bedl # eoh)
¥ &‘”‘\M ek - m I Naoalbﬁ de. Pu_ JO\,\M;. ﬂtf"r fk 1

) £ L
‘)\2\ gD(- e

\ \ = \ A |
>nl

y\" 1 \
>ﬂ3

D\“"‘ /,\9 D) n"i\ « B lzuqr"@\ J/M an&
O

L
L v\ Mm&xlu (.sw\?w Sow

Vorsow @, (L(,.J? . US’W‘, ‘)w

w st«al-

