
Aspect-based patterns for grid programming

Luis Daniel Benavides Navarro, Rémi Douence, Fabien Hermenier, Jean-Marc Menaud, Mario Südholt
OBASCO group, EMN - INRIA, LINA, D́epartement Informatique,

École des Mines de Nantes. 44307 Nantes cedex 3, France
{lbenavid,douence,fhermeni,menaud,sudholt}@emn.fr

Abstract

The development of grid algorithms is frequently ham-
pered by limited means to describe topologies and lack of
support for the invasive composition of legacy components
in order to pass data between them. In this paper we present
a solution to overcome these limitations using the notion of
invasive patterns for the construction of distributed algo-
rithms, a recent extension of well-known computation and
communication patterns. Concretely, we present two con-
tributions. First, based on a study of how patterns are in-
stantiated in NAS Grid, a well-known benchmark used for
evaluating performance of computational grids, we show
how invasive patterns can be used for the declarative defini-
tion of large-scale grid topologies and checkpointing algo-
rithms. Second, we qualitatively and quantitatively evaluate
how our approach can be used to implement the checkpoint-
ing on top of grid applications.

1 Introduction

In recent years, grids have become a powerful system
architecture that allows to execute large-scale applications
as diverse as scientific applications or large-scale informa-
tion systems. This kind of architecture that is composed of
multiple local federations provides a highly heterogeneous
environment to users [9]. To overcome this heterogeneity
issue, grid architectures and applications are typically built
using special purpose middleware that allows to bridge be-
tween existing, often component-based, infrastructures.

Currently, the development of grid applications using
such middleware is frequently hampered by two issues: lim-
ited means to describe topologies and lack of support for the
invasive composition of legacy components. For instance,
grid topologies that underlie grid applications are mostly
defined only implicitly through message passing as part of
a grid application or using low-level means for topology
definition, such as graph constructors whose links to the
grid application have to be defined once and for all. As

to the composition of legacy grid components, it often re-
quires significant rewriting of the involved legacy compo-
nents, for example, because the composition requires data
to be passed that is not exported by the legacy components.

To overcome these problems in this paper we evaluate
the applicability of invasive patterns [4]. Invasive patterns
are a recent extension of well-known computation and com-
munication patterns for the construction of distributed al-
gorithms. This approach relies on Aspect Oriented tech-
niques to deal with crosscutting (i.e., non modular) accesses
to execution states that are needed for the composition of
distributed entities. Concretely, we present two contribu-
tions: (i) motivate the need for modularization techniques
for crosscutting accesses within legacy grid applications:
concretely, we show how invasive patterns and their aspect-
oriented features for explicitly distributed programmingcan
be used to modularize crosscutting accesses in the context
of the NAS Grid Benchmark (NGB) [10], and thus provide
effective support for the pattern-based implementation of
grid algorithms over large topologies; (ii) we evaluate the
approach qualitatively and quantitatively for a non-trivial
extension of NGB that extends it by error recovery in form
of a checkpoint algorithm.

The paper is structured as follows. First, we present
common patterns found in legacy grid applications, in par-
ticular NGB (Sec. 2). In Section 3, we introduce the pat-
tern language on which our solution is based and present
its implementation using the AWED system for Aspect-
Oriented Programming with explicit distributed features.
Sec. 4 presents the evaluation and benchmarks of our ap-
proach. Related work is discussed in Sec. 5. Finally, Sec. 6
gives a conclusion and discusses future work.

2 Motivation

To motivate our approach we have analyzed the NAS
Grid benchmark (NGB) framework [10] for grid infras-
tructures. The NGB framework is a benchmark suite for
computational grids that addresses one of the most impor-
tant features of grid computing, the ability to execute dis-

Figure 1: Patterns for NAS Grid

tributed, communicating processes. NGB is frequently used
for testing programming tools and compiler optimizations.
Furthermore, it provides a real-world example of the use
of computational and communication patterns in real-world
grid applications.

In general terms, NAS Grid provides facilities for the
benchmarking of grid applications that are based on the fol-
lowing four patterns [7] (see Fig. 1): Embarrassingly Dis-
tributed (ED), Helical Chain (HC), Visualization Pipe (VP)
and Mixed bag (MB).

Benchmarks are produced using the NAS Grid frame-
work by defining graphs of nodes that represent calcula-
tions and edges that indicate how results of computations
have to be calculated, ordered and passed between nodes.
An instance of a benchmark is specified by a static data
flow graph (DFG). The DFG consists of nodes connected
by directed arcs. NAS Grid includes an imperative and
low-level language to describe such graphs by enumerat-
ing all nodes and edges. Communication between nodes is
asynchronous. A DFG node receives input data from other
nodes through its input arc(s); this data is used by the tar-
get node(s) to set initial conditions and to perform the tar-
get nodes’ calculations. A DFG node starts its computation
only after it receives all data from its predecessor(s) in the
graph. After performing its calculation, it sends the com-
puted result along all of its output arcs.

Example: Global Checkpoint Error Recov-
ery

In order to illustrate the problems in the implementation
of distributed algorithms over grid architectures and evalu-
ate our solution to them we have investigated a fundamental
service in grids, global checkpoint error recovery.

Checkpoint recovery is a service that facilitates the re-
covery and the continuation of an interrupted computation.
This service is essential for large, long-running computa-
tions to minimize downtime and other costs incurred by sys-
tem or applications failures that stop the computations. A
checkpointing service periodically saves the state of the ap-
plications and the manipulated data. For a distributed appli-
cation, a distributed checkpoint is a set of local checkpoints,
one from each process constituting the overall distributed
computation. In this situation, the service must ensure the
global consistency of the captured state. Consequently, a
checkpointing service has to inspect and modify the local
computations in an invasive manner.

In grid environments, global checkpoint recovery is par-
ticularly important to facilitate migration and continuation
of incomplete computations in the context of temporar-
ily unavailable resources. However, for large scale ap-
plications, checkpointing is subject to two specific prob-
lems. First, some specific applications embody theoreti-
cally and experimentally validated algorithms, whose cor-
rectness must not be endangered through source code mod-
ification. In this situation, a generic approach that does
not require any code modification can be used but impacts
the memory footprint and thus frequently is not viable for
performance reason [17]. Our solution that uses an as-
pect based approach allows a checkpointing service to be
implemented while transparently modifying the interaction
between legacy components with a negligible impact on
the memory footprint and other performance characteris-
tics. Second, defining grid algorithms concisely over large-
scale topologies depends on the application at hand and is,
for instance, very error-prone and tedious using NGB’s low-
level means for topology definitions. In the case of global
checkpoint recovery, a complete representation of the com-
munication state is needed to ensure the necessary global
coordination for the capture of a coherent state: a coordi-
nation algorithm that may be complex and specific to the
application communication model thus has to be developed.
Invasive patterns support the concise description of modifi-
cations to computations and communications between com-
ponents and thus enable, in particular, checkpointing to be
added modularly to the NGB.

3 Aspect-based invasive patterns for grid
programming

In order to address the limitations of current grid im-
plementation methods, we propose to harness invasive pat-
terns [4] to flexibly define grid applications over arbitrary
topologies and enable the modularization of crosscutting in-
vasive accesses (i.e., scattered and tangled code) using as-
pects.

As illustrated in Fig. 2, invasive patterns allow invasive

Figure 2: Invasive patterns

data accesses on one machine (dashed lines on the left rep-
resent a sequence of local events) and trigger executions on
other machines (on the right). By supporting the application
of specific behavior to groups of hosts (instead of individ-
ual hosts), grid applications can easily quantify over large
topologies. This way, it is possible to invasively modify
the intrinsic structure of legacy code in grid applicationsby
creating different topologies for different concerns overone
application. In this section, we first revisit the essentials of
invasive patterns and then present our current implementa-
tion of invasive patterns in terms of a transformation from
invasive patterns into the AWED system [5], a language and
execution platform for aspects with features for explicitly
distributed programming.

3.1 Pattern Language

Our language for invasive patterns is based on Aspect
Oriented Programming (AOP) [1, 15] and relies on two key
concepts: aspects and sequences of aspects.

AOP is a new programming paradigm that investigates
the modularization of crosscutting concerns that are sepa-
rated and implemented in independent units of modulariza-
tion, the so-called aspects. An aspect is a class-like con-
struct with two additional elements: pointcuts and advice.
Pointcuts are language constructs that match sets of join
points (events in the execution of a program). Advice is
a method-like construct with an associated pointcut defi-
nition. When a specific join point is matched during the
execution of the base application by a pointcut, the body
of the corresponding advice is executed (depending on the
advice definition) before, after or instead of the matched
join point. Technically, the code of the base application and
aspect code are weaved (i.e., compiled) into an executable
program. This can be done either at compiling time, using a
static weaver, or at execution time, using a dynamic weaver.

An aspectis applied to two groups of hosts (see Fig. 3-
a). When its pointcut designator matches execution events
on the hosts of the left hand side group, its remote advice
is executed on the hosts of the right hand side group. If the
first group is restricted to containing a single host only we
get the farm pattern (Fig. 3-b). If a single host forms the
second group we get the gather pattern (Fig. 3-c). Finally,

Figure 3: Basic patterns and their composition

a single host in both groups yields a pipe pattern (Fig. 3-d).
Note that we do not need to specify all edges of the graph
but only the flow from one group of components to another.

Sequences of aspectsprovide a means to synchronize
several pattern-defining aspects: the second aspect in a se-
quence is activated only once the first has started (or ended)
executing its advice. This enables us to compose patterns
and realize complex data flow graphs. Figure 3-e, for in-
stance, illustrate a composition of aspects realizing a farm
pattern that is followed by two pipe patterns and a gather
pattern.

The grammar in Fig. 4 defines the syntax of our lan-
guage. A sequential patternP is a sequence of host groups
G1 . . .Gn separated by aspectsA1 . . .An−1. A group
of hostsG is defined by its hostsH or by sub-patterns
P (patterns can be hierarchically composed). A pattern
P = G1A1 . . . Gn denotes the hostsGn when P occurs
on the left hand side of an aspect, andP denotes the hosts
G1 when it occurs on the right hand side of an aspect. Each
aspectA defines an around pointcutPCD aSourceAdvice

to be executed locally where the joinpoint is matched and a
TargetAdvice to be executed remotely. This remote advice
can be synchronous but is asynchronous by default. Advice
consist of method bodies,i.e., essentially Java statements.
Source advice may additionally call the matched base call
using theproceed construct. Target advice must not call
proceed, because the corresponding pointcut is matched
on the target hosts. When a pointcut matches a joinpoint,
it can bind identifiers to values such as the localhostH or
method arguments Id. A single pointcut can match several
joinpoints on different hosts, so there is a set of bindings
(H, Id∗) for each host. A pointcutPCD matches method
call specified by their signatureMSig. It can extract con-
text values by binding identifiers to the receivertarget
or its argumentsargs. It can be logically composed, but
it can also define a sequenceSeq of joinpoints. Follow-
ing the paradigm of stateful pointcuts [8, 5] (and unlike As-
pectJ [3, 16]) pointcuts may explicitly specify finite-state
automata for matching of sequences of execution events.

P ::= patternSeq G1 A1 G2 A2 . . .Gn

G ::= H G | P G | ǫ

A ::= aspect { around((H , Id*)*) : PCD SourceAdvice [sync] TargetAdvice }
PCD ::= call(MSig) | target(Id) | args(Id+)

| PCD && PCD | PCD || PCD | !PCD

| Seq

Figure 4: Pattern language

Remote pointcut

on(localhost)

o
n
(
j
p
h
o
s
t
)

on(123.34.7.9)

on(group1)

Figure 5: Remote pointcuts and advice in AWED

Such automata are constructed from transitions that may be
labelled, advice may then be triggered by the occurrence of
a transition with labell of the automatona using the point-
cut termstep(a, l).

3.2 Implementation

The pattern language introduced in the previous sec-
tion supports the pattern-based construction of grid algo-
rithms by two main concepts: algorithms formulated in
terms of conditions about hosts that trigger executions on
other hosts and flexible assembly of such (basic) algorithms
over topologies expressed using groups of hosts. We have
employed AWED [5], a language and execution system for
AOP of distributed applications, to implement such grid al-
gorithms. In the following we first introduce the main con-
cepts of the AWED language followed by a description of
the implementation of our pattern language in termstrans-
formation into AWED.

3.2.1 Implementing invasive patterns for grids with
AWED

The AWED language has been designed as an aspect lan-
guage for the modularization of crosscutting concerns in
distributed systems. In general terms, AWED allows to
match sequences of execution events in a distributed sys-
tem that then trigger remote (advice) executions.

Figure 5 illustrates the two main features of the lan-
guage: remote pointcut and advice. Pointcuts essentially
allow to match sequences of execution events that occur on

different hosts. Hosts can be referred to using absolute ad-
dresses but can also be defined relative to the host on which
an aspect is deployed (termlocalhost), the host colored in
gray in the figure. Remote advice can be triggered on other
hosts using theon specifier. Besides the host specifications
available for pointcut definitions, advice execution can also
be specified to take place on the host where the pointcut has
been matched (termjphost).

Pointcuts and remote advice execution may depend on
explicitly defined groups of hosts. In pointcuts, such groups
may limit matching of execution events to sets of hosts; as
to advice executions, groups allow to execute advice on sev-
eral hosts. Finally, AWED supports synchronous and asyn-
chronous communication between a pointcut and triggered
pieces of advice.

Transforming Invasive Patterns into AWED. The
AWED language matches the requirements of the language
for invasive patterns quite well. Most importantly, AWED
aspects can be used to directly implement the modulariza-
tion of crosscutting accesses for invasive patterns. Modular-
ization of such concerns using finite-state automata in the
pattern language (seq in Fig. 4) is directly expressible as
part of AWED’s pointcut language. Furthermore, AWED’s
notion of remote aspects, together with argument passing
from pointcuts to advice, fits some of the communication
patterns shown in Fig. 3 quite well. Concretely, execution
of remote advice on several hosts in a group corresponds to
afarm-like communication topology, while execution of an
advice on one machine realizes agather-like topology if it
has been triggered by events occurring on different hosts.

Fig. 6 presents the implementation of the pattern shown
in Fig 2 as an example of the fundamental mechanisms used
for the implementation of the four basic patterns underlying
NAS Grid benchmarks shown in Fig. 1. In the figure, the as-
pect matches a sequence of local events on each one of the
left hosts by means of the pointcutinvasiveSequence().
In the sequence definition each state is defined by an
atomic pointcut,e.g., the pointcutcall(* *.*(..)) &&

host("LeftHosts")&&host("localhost") match all
the calls to any method of any class (call(* *.*(..))),
that occur in a host that is a member of the group of hosts
LeftHosts and that happens in the host where the as-

1 aspect DualGatherSync {
2 public void sendData(BMRequest req, BMResult res){}
3

4 pointcut invasiveSequence():
5 seq(
6 Ti1: call(* *.*(..)) && host("LeftHosts")
7 && host("localhost") > Ti2 || Ti3,
8 Ti2: call(* *.*(..)) && host("LeftHosts")
9 && host("localhost") > Ti2 || Ti3,

10 Ti3: call(* *.*(..)) && host("LeftHosts")
11 && host("localhost"));
12

13 asyncex around(): step(invasiveSequence(), Ti3) {
14 proceed();
15 //get results
16 sendData(req, res);}
17

18 pointcut syncSequence(BMRequest req, BMResults res):
19 seq(
20 T1: call(* *.sendData(..)) && host("LeftHosts")
21 && on("RightHosts") > T2,
22 T2: call(* *.sendData(..)) && host("LeftHosts")
23 && on("RightHosts") > T3,
24 T3: call(* *.sendData(..)) && host("LeftHosts")
25 && on("RightHosts") && args(req, res) > T1);
26

27 asyncex after(BMRequest req, BMResults res):
28 step(syncSequence(req, res), T3){
29 IS isComp=
30 new IS(req.clss, req.numthreads, req.serial);
31 isComp.runBenchMark();}}

Figure 6: Implementation of a multiple farm-gather pattern

pect is deployed (host(localhost)). The advice that is
triggered on the last step of such sequence (by means of
pointcutstep(invasiveSequence(), Ti3)) is used to
gather specific data and generate an event (sendData) to
trigger the remote execution in the right hosts. The other
sequence pointcut (syncSequence) implements a rendez-
vous: it ensures that the remote calculation is only launched
after the three triggering events have occurred. Note that
explicit references to hosts are avoided, instead only groups
are referred to.

4 Evaluation

To evaluate our approach we have implemented an exten-
sion to the NAS Grid benchmarking framework by adding
checkpointing support. This implementation coexists with
the native communication mechanism of the NAS Grid
framework (we used its Java RMI instance); AWED is
exclusively used to implement the checkpointing concern.
This concern uses a different distributed topology than that
directly implementable by the different configurations of
NAS Grid. Figure 7a shows the topology structure and dis-
tributed messages of the checkpointing algorithm that we
have used in the experiment. In the experiment, any node,
even an external node, can generate aCheckpointsignal:
upon reception of that signal, a node stops its current com-
putation, stores a consistent state, sends that state to the

centralized checkpointing monitor and waits for aresume
signal. Thus, the application will use a composition of the
farm and gather topologies as presented in section 3 figures
3b and 3c. This simple algorithm does not require synchro-
nization between nodes but needs to weave the underlying
application with joinpoints that have to be propagated in the
(distributed) grid: this algorithm allows to evaluate the ac-
tual overhead of the runtime infrastructure imposed by the
AWED implementation of invasive patterns. The algorithm
is fully distributed and any node can serve as coordinator of
the checkpointing protocol.

Figure 7b shows a representation of the state machine
controlling the checkpointing algorithm in the distributed
nodes. In the native infrastructure, we have identified two
joinpoints per node that are relevant for our implementation
of checkpointing. The first joinpoint (START transition)
corresponds to the execution point when data from previous
calculations is received by a node; the second (STOP) cor-
responds to a node having just sent calculation results to the
next node in the calculation graph. When a checkpoint sig-
nal (CHKPT transition) is received a consistent local state
(state before calculation) is stored locally and also, by our
checkpointing implementation, remotely in the checkpoint
data structure. Thus, after a failure, recovery will be car-
ried out locally by each node depending on the state of the
node. If it determines that it has been in the third state, it
will relaunch the calculation, otherwise no specific actionis
needed (because the result of the last computation has al-
ready been sent).

(a) Topology (b) State ma-
chine

Figure 7: Topology and state machine representation of the
protocol implementation for check pointing.

Figure 8 shows the implementation of this checkpoint-
ing algorithm using AWED. The aspect defines two lo-
cal fields to store the checkpoint image. The image is
created when the first event defining theSTART tran-
sition is received by the advice triggered by the point-
cutstep(chkptSequence(), START). As a second
step, the aspect waits for a checkpoint event (transition la-

beledCHKPT) or a finalization event (transitionSTOP). In
case of a checkpoint event the aspect waits for a resume
event (see transitionRESUME) to reinitialize the calcula-
tion. Finally, the transitionIGNORE ensures that terminated
calculations are ignored and avoid gathering data or restart-
ing computations in this case. This last transition guaran-
tees that no further events are sent after a checkpoint image
is captured: checkpointing thus conforms to the notion of
consistency introduced in section 2 (a checkpoint is taken
between reception of data and the end of the corresponding
calculation).

1 aspect ChkPtAsp perobject {
2 BMRequest req;
3 BMResults res;
4

5 public BMRequest requestChkPtInfo(){}
6

7 pointcut chkptSequence():
8 seq(
9 START: call(* BenchUnion.startBenchmark(..))

10 && host(localhost) > STOP || CHKPT;
11 STOP: call(* BenchServer.PutArcData(..))
12 && host(localhost);
13 CHKPT: call(* chkimpl.MainConsole.stopCalculNow(..))
14 && !host(localhost) > RESUME || IGNORE;
15 IGNORE: call(* BenchServer.PutArcData(..))
16 && host(localhost) > RESUME || IGNORE;
17 RESUME:
18 call(* chkimpl.MainConsole.startCalculNow(..))
19 && !host(localhost) > STOP || CHKPT);
20

21 before(): step(chkptSequence(), START)
22 { System.out.println("Asp:Iniciando...");
23 BenchUnion comp =
24 (BenchUnion) thisJoinPoint.getCalledObject();
25 req =
26 (new BenchUnionInspector(comp)).getRequest();
27 }
28

29 around(): step(chkptSequence(), IGNORE){
30 return new Object();}
31

32 after(): step(chkptSequence(), RESUME)
33 { BenchUnion comp = new BenchUnion(req);
34 comp.startBenchmark();
35 }}

Figure 8: Checkpoint concern implemented using AWED

4.1 Qualitative evaluation

We have first performed a qualitative evaluation by com-
paring how concise grid applications can be expressed in
terms of the native topology configuration language pro-
vided by NAS Grid and our pattern language.

A comparison between the native NAS Grid language
for the definition of DFGs (fig. 9) and our pattern language
(fig. 10) shows that the abstraction of host groups we in-
troduce make the declaration of grid topologies much more
concise. A large-scale grid application is frequently com-
posed of over 1,000 processes. Without patterns and pattern
composition, the task of defining a grid application rely-

ing only on the NAS Grid language is very tedious. Typ-
ically one needs to write one line to define a node and
one for the link between two nodes. Our language is con-
cise (a few lines define groups and connect them with pat-
terns), and it supports pre-established properties (e.g., syn-
chronization, topology). For the sake of readability, we
directly use pattern names such asfarm and gather.
These terms can be formally defined as syntactic sugar in
forms of macros that are expanded into plain aspect def-
initions: farm(G1,Afarm,G2), for example, becomes
G1 {aspect Afarm ...} G2 in terms of the pattern
language introduced in Sec. 3.1. (In our prototype imple-
mentation, we have used a straightforward script to expand
intensional group definitions, such asG2={h1..h7}).

1 graph: {
2 title: "ED.A"
3 node:{title: "0" label: "SPTask.A.h0"}
4 node:{title: "1" label: "SPTask.A.h1"}
5 node:{title: "2" label: "SPTask.A.h2"}
6 node:{title: "3" label: "SPTask.A.h3"}
7 node:{title: "4" label: "SPTask.A.h4"}
8 node:{title: "5" label: "SPTask.A.h5"}
9 node:{title: "6" label: "SPTask.A.h6"}

10 node:{title: "7" label: "SPTask.A.h7"}
11 node:{title: "8" label: "SPTask.A.h8"}
12 edge:{sourcename: "0" targetname:"1"}
13 edge:{sourcename: "0" targetname:"2"}
14 edge:{sourcename: "0" targetname:"3"}
15 edge:{sourcename: "0" targetname:"4"}
16 edge:{sourcename: "0" targetname:"5"}
17 edge:{sourcename: "0" targetname:"6"}
18 edge:{sourcename: "0" targetname:"7"}
19 edge:{sourcename: "1" targetname:"8"}
20 edge:{sourcename: "2" targetname:"8"}
21 edge:{sourcename: "3" targetname:"8"}
22 edge:{sourcename: "4" targetname:"8"}
23 edge:{sourcename: "5" targetname:"8"}
24 edge:{sourcename: "6" targetname:"8"}
25 edge:{sourcename: "7" targetname:"8" }}

Figure 9: Farm-Gather topology with NAS language

1 G1={h0}
2 G2={h1..h7}
3 G3={h8 }
4 gather(farm(G1,Afarm,G2),Acalc,G3)

Figure 10: Farm-Gather topology with pattern language

We have implemented the functionality for checkpoint-
ing and recovery using AWED by two classes and one
aspect accounting for a total of 93 lines of code (LOC).
Achieving the same functionality in native NAS Grid us-
ing Java RMI will require the modification of the current
framework for distribution that amounts to 3939 LOC. We
could also create an additional framework for the distribu-
tion, concurrency and coordination of the checkpoint func-
tionality, but in both cases we still have to modify the orig-
inal framework. It is clear that our proposal is much better

understandable and more maintainable, in particular if fur-
ther evolution or refactoring is required.

4.2 Performance Evaluation

In order to evaluate the performance impact due to our
AWED implementation, we have run the NAS Grid bench-
mark on Grid’5000, a grid of 5,000 processing units dis-
tributed over 9 French sites. Note that the number of re-
sources that can be allocated for an individual experiment
depends of the number of request from affiliated laborato-
ries.

In order to present the overhead of our AWED-based
implementation, we compare the runtime of two different
NASGrid Benchmark configurations that represent typical
data-flow application topologies: HC, a fully sequential dis-
tributed topology; and FG a typical master/slave distributed
topology where an initial node propagates tasks to a farm,
and then results are gathered on single node. In both cases,
each node is running the same component. For each exper-
iment, we have deployed the components on two different
clusters located on two different sites and run the experi-
ment 3 times. Figure 11 shows the average overhead due
to the AWED framework and the checkpoint service, using
two different application topology and a variable amount of
computing nodes. As described earlier, the checkpointing
service records a consistent state of each host at two join-
points: first, when a local node receives data from previous
calculations, second when the node just sent calculation re-
sults to the next node(s) in the calculation graph.

 20

 40

 60

 80

 100

 120

 140

 30 40 50 60 70 80 90 100 110 120 130

R
un

tim
e

(s
ec

)

Nb. of nodes

HC (native)
HC (awed)

 10

 12

 14

 16

 18

 20

 30 40 50 60 70 80 90 100 110 120 130

R
un

tim
e

(s
ec

)

Nb. of nodes

FG (native)
FG (awed)

Figure 11: Impact of AWED implementation in NASGrid

The AWED implementation shows an acceptable over-
head in the case of the massively parallel (FG) benchmark:
in this case the runtimes of the native benchmark and the
benchmark with AWED are comparable. On the fully se-
quential benchmark HC, the global overhead is more impor-
tant but still acceptable. This is due to thelocal overhead

between each node that accumulates over sequential execu-
tions. Note that AWED’s current implementation generates
a distributed message for every call tostartBenchMark
in the classBenchUnion: thus the total number of mes-
sages including checkpointing is circa double that of the
NAS Grid algorithm without checkpointing. It can be ex-
pected that further optimization in aspect weaving and mes-
sage delivery lead to a smaller communication overhead.

5 Related work

While no other approach is directly related to ours in the
sense that it investigates language support based on AOP
techniques for patterns in the context of grid applications,
there is a relevant body of work from several different do-
mains that focuses on some of these characteristics.

Patterns for distributed and parallel programming.
Distributed applications are often built using rich middle-
ware structures, which provide basic services for the im-
plementation typical computation and communication pat-
terns. In the domain of grid computing, for instance,
Globus, one of the most popular middleware for grid archi-
tectures, uses the resource specification language RSL [11]
to support the deployment of applications. In contrast to
the notion of invasive patterns advocated here, computation
and communication patterns have to be programmed in an
ad hoc manner, in particular because RSL cannot describe
connection constraints between the parts of an application
that depend on execution state that is encapsulated by the
distributed nodes.

Architectural and programming patterns are quite pop-
ular for the programming of (massively) parallel applica-
tions. Much work has been done, for instance, on so-called
skeletons following Cole’s seminal work [6]. More recent
work has focused on the application of such pattern-based
parallelism to larger-scale imperative applications (see, e.g.,
[19, 18]). Most of these approaches essentially rely on an
underlying regular communication topology and use of a
homogeneous synchronization model, two properties that
do not hold for the applications we are targeting. Further-
more, crosscutting accesses to execution state is not consid-
ered in these approaches.

Aspects for grid applications. Some research and indus-
trial approaches have addressed the use of AOP techniques
in the context of grid applications. Sequential aspects have
been used to implement monitoring and management of
grid applications [12]. Furthermore, they have been em-
ployed to address composition in workflow systems for grid
services [14]. Finally, recent industrial efforts, such asthe
Gridgain approach [13] claim to use AOP to enable trans-
parent configuration and modification of grid applications.

These approaches apply directly traditional sequential AOP
techniques and do not explore declarative support of aspects
to define and implement fully distributed invasive patterns
as motivated by our research. As discussed in this paper,
such approaches cannot implement crosscutting concerns in
distributed applications as concisely as using our proposal
if such a concern has to refer to different nodes.

6 Conclusion

In this paper, we have investigated two major difficulties
in applying patterns to grid applications on the implementa-
tion level: the need for declarative topology definitions and
crosscutting access of patterns to non-local execution states.
We have harnessed a recent notion of invasive patterns for
distributed programming to tackle these issues. Such pat-
terns extend well-known regular computation and commu-
nication patterns over arbitrarily large topologies by means
for the modularization of access to non-local state that trig-
gers communication between nodes. Finally, we have ex-
tended the NAS Grid benchmarking software by a check-
pointing service. Our qualitative and quantitative evaluation
has shown that our approach is expressive and efficient.

This work offers several opportunities for future work.
For instance, AWED supports groups of hosts that evolve at
run-time, which should allow to support more dynamic grid
applications. Second, invasive patterns introduce structures
that could enable analyses of properties over applications
(e.g., check topology invariants). Finally, grid applications
often depend on their correct execution and synchronization
over the underlying system topology: the formal definition
of invasive patterns presented in this paper should be useful
to define and formally proof such properties of grid appli-
cations using invasive patterns.

7 Acknowledgements

Experiments presented in this paper were car-
ried out using the Grid’5000 experimental testbed,
an initiative from the French Ministry of Research
through the ACI GRID incentive action, INRIA, CNRS
and RENATER and other contributing partners (see
https://www.grid5000.fr).

References

[1] M. Akşit, S. Clarke, T. Elrad, and R. E. Filman, editors.
Aspect-Oriented Software Development. Addison-Wesley
Professional, Sept. 2004.

[2] Proceedings of the 5th ACM Int. Conf. on Aspect-Oriented
Software Development (AOSD’06). ACM Press, Mar. 2006.

[3] AspectJ home page.
http://www.eclipse.org/aspectj.

[4] L. D. Benavides Navarro, M. S̈udholt, R. Douence, and J.-
M. Menaud. Invasive patterns for distributed applications.
In Proc. of the 9th Int. Symp. on Dist. Objects, Middleware,
and Applications (DOA’07). Springer Verlag, Nov. 2007.

[5] L. D. Benavides Navarro, M. S̈udholt, W. Vanderperren,
B. De Fraine, and D. Suvée. Explicitly distributed AOP us-
ing AWED. In Proc. of the 5th ACM Int. Conf. on Aspect-
Oriented Software Development (AOSD’06). ACM Press,
Mar. 2006.

[6] M. Cole. Algorithmic Skeletons: Structured Management of
Parallel Computation. MIT Press, 1989.

[7] R. F. V. der Wijngaart and M. A. Frumkin. Evaluating the
information power grid using the NAS Grid benchmarks. In
High-Performance Grid Computing Workshop at IPDPS’04.
IEEE, Apr. 2004.

[8] R. Douence, P. Fradet, and M. Südholt. A framework for the
detection and resolution of aspect interactions. InProc. of
the ACM SIGPLAN/SIGSOFT Conference GPCE’02, pages
173–188. Springer-Verlag, Oct. 2002.

[9] I. T. Foster. The anatomy of the grid: Enabling scalable
virtual organizations. InProc. of Euro-Par’01, pages 1–4,
London, UK, 2001. Springer Verlag.

[10] R. Frumkin, M. Van der Wijngaart. NAS Grid benchmarks:
a tool for grid space exploration.High Performance Dis-
tributed Computing, pages 315–322, 2001.

[11] Globus3 resource specification language (rsl).
http://www-unix.Globus.org/toolkit/
docs/3.2/ gram/ws/developer/
mjsrslschema.html.

[12] M. Grechanik, D. E. Perry, and D. Batory. Using aop to
monitor and administer software for grid computing envi-
ronments. InProc. of COMPSAC’05, Vol. 1, pages 241–248.
IEEE, 2005.

[13] Gridgain, a computational grid framework.
http://www.gridgain.com/product.html.

[14] N. Joncheere, W. Vanderperren, and R. V. D. Straeten. Re-
quirements for a workflow system for grid service compo-
sition. In Business Process Management Workshops, pages
365–374, Berlin, Germany, 2006. Springer.

[15] G. Kiczales. Aspect oriented programming. InProc.
of the Int. Workshop on Composability Issues in Object-
Orientation (CIOO’96) at ECOOP, July 1996. Selected pa-
per published by dpunkt press, Germany.

[16] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm,
and W. G. Griswold. An overview of AspectJ. In
ECOOP 2001 — Object-Oriented Programming 15th Eu-
ropean Conference, Budapest Hungary, pages 327–353.
Springer-Verlag, Berlin, June 2001.

[17] L. Silva and J. Silva. System-level versus user-defined
checkpointing. Reliable Distributed Systems, Proc. of the
17th IEEE Symposium on, pages 68–74, Oct 1998.

[18] S. Siu, M. De Simone, D. Goswami, and A. Singh. Design
patterns for parallel programming. InProc. of PDPTA’96),
pages 230–240. C.S.R.E.A. Press, Aug. 1996.

[19] K. Tan, D. Szafron, J. Schaeffer, J. Anvik, and S. MacDon-
ald. Using generative design patterns to generate parallel
code for a distributed memory environment. InProc. of
the ACM SIGPLAN Symposium PPOPP’03, pages 203–215,
June 2003.

