

C4Cities

09/12/15

Scheduling Live-Migrations for Fast, Adaptable and Energy-Efficient Relocation Operations

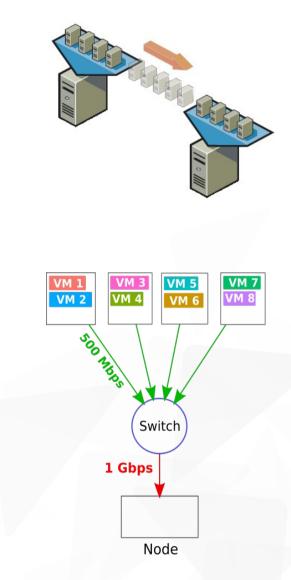
Vincent Kherbache, Fabien Hermenier, Eric Madelaine

Scheduling Live-Migrations for Fast, Adaptable and Energy-Efficient Relocation Operations

Dynamic VMs management

Use-cases

- Load-balancing
- Maintenance tasks on production servers
- Reducing energy consumption


Mechanism

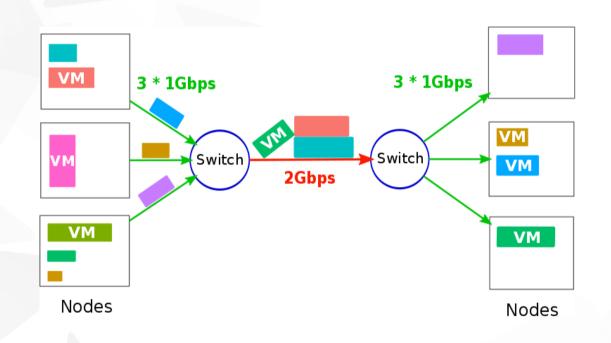
Live migration

In practice

09/12/15

Schedule multiple migrations to terminate ASAP

Live-migration: pre-copy algorithm


Migration in 2 phases:

- 1. Warm-up phase
- 2. Stop-and-copy phase

- the available bandwidth
- **the VM memory activity**

Migrations scheduling in theory

Intuitions:

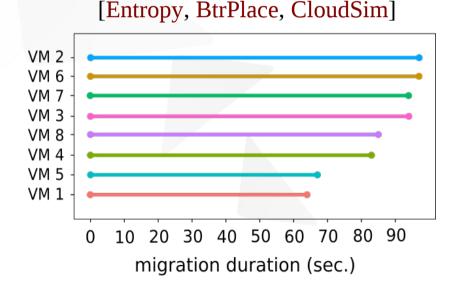
- Allocate as much bandwidth as possible per migration
- Parallelize without reducing maximal migration bandwidth

State of the art

Proposed solutions: [Entropy, BtrPlace, CloudSim, Memory Buddies, ...]

Theoretical simplifications:

- Non-blocking network
- Memory workload ignored
- Abusive or inappropriate parallelism

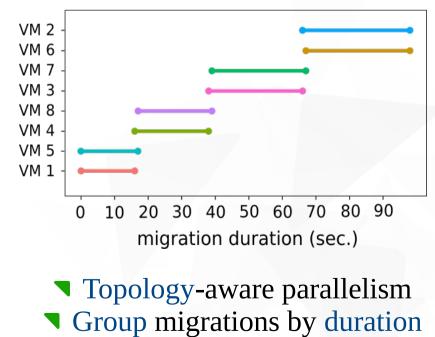

Practical consequences:

- Unanticipated long migrations
- Reduced VMs performance
- Limited fine-grained control capabilities

Migrations scheduling in practice

Compute for each migration:

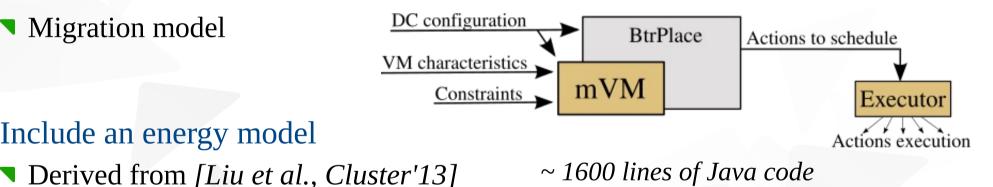
- The bandwidth to allocate
- Its theoretical duration
- The moment to start



All migrations in parallel
 Long migrations duration

09/12/15

Optimal schedule



6/22

Solution: **mVM**, a migrations scheduler

- Replace the migrations scheduler of OBtrPlace
- Propose a new scheduling model
 - Network model
 - Migration model

09/12/15

Domain specific constraints

Include an energy model

Temporal scheduling constraints / energy constraint

Migration model: estimate the duration of a migration

Minimal duration (without workload)

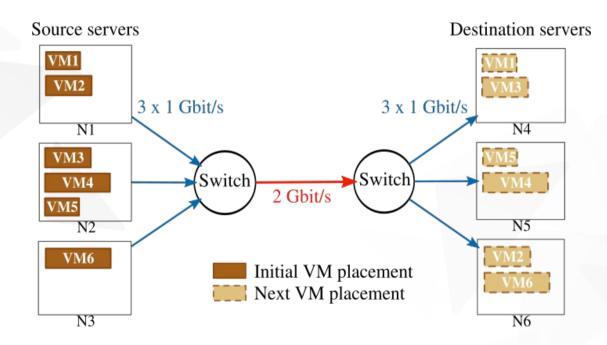
- Memory used / Bandwidth ([Entropy, BtrPlace, CloudSim])
- Real duration

09/12/15

- Memory dirty pages transfer
 2 phases: Hot pages → Cold pages
- Dirty rate equivalent to a bandwidth reduction

 $Duration = \frac{MemoryUsed}{Bandwidth - DirtyPageRates}$

Maximal bandwidth already known

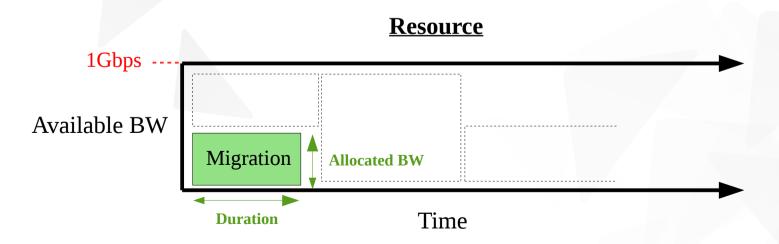

Pre-compute migrations duration

Networking model: concepts

Sharing bandwidth over time

Full-duplex links

- Heterogeneous topologies
- Blocking network elements


Networking model : implementation

Mainly implemented using standard « cumulative » constraints

Place tasks with varying heights and lengths on limited resources: 1 task <=> 1 migration resources <=> network elements

■ 2 resources per link: <u>uplink</u> and <u>downlink</u> bandwidth (full-duplex)

1 resource per blocking switch (limited switch capacity)

Temporal control of the scheduling

Temporal constraints:

\$\ sync (vm[1-4]); \$\ seq (vm[5,8]); \$\} Control the parallelism \$\ before (vm-1,vm-7); → Control the priority

Objective: MinMTTR

- Migrate each VM as soon as possible
- Ensure a low completion time

Energy control of the scheduling

Absolute and relative power capping constraints:

- ▼ powerBudget (1000 Watts);
- ▼ powerBudget (500 Watts, [22:00-06:30]);

- Allows to adapt the power consumption according to:
 - Availability of renewable energies → maximize the use of renewable
 - Energy cost variability → reduce energy costs

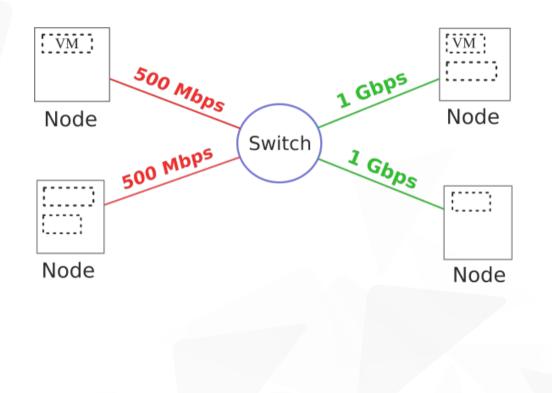
• **Objective**: Minimizing the energy consumed

Ensure a low completion time

09/12/15

Shutdown idle nodes at the earliest

Evaluation: parallelism decisions

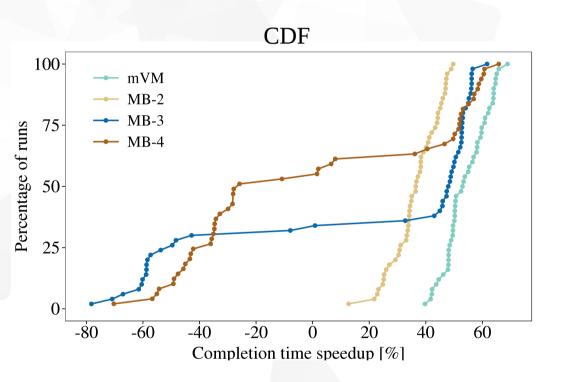


50 random scenarios

- Configuration:
 - 4 servers
 - 10 VMs 2 templates
 - Heterogeneous network
 - Random placements

Experimental setup:

- Hypervisor: KVM
- Shared storage (NFS)
- Trafic shaping via « tc » command
- Workloads via « stress » command


Evaluation: migration duration

Against a sequential schedule (lowest migration durations)
Only 7% slowdown for mVM
30% for the best MB configuration
Appropriate parallelism
vary from 2 to 6 in mVM
constant in MB ([2-4])

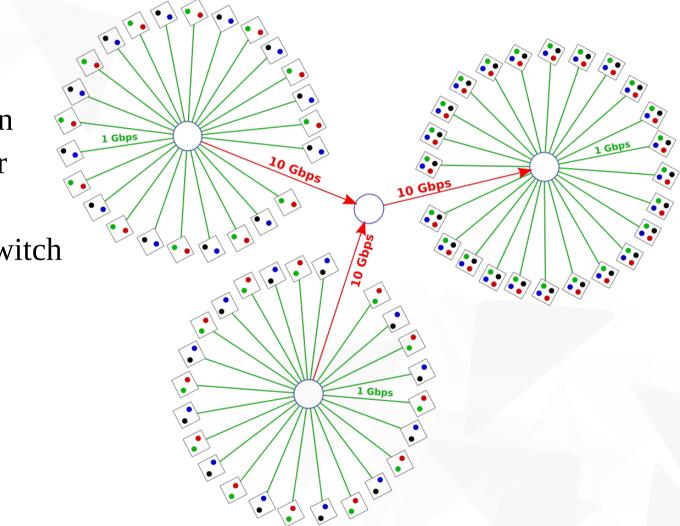
Scheduler	Mean migration time (sec.)	Average slowdown (%)
mVM	45.55	7.35 %
MB-2	57.22	29.69 %
MB-3	113.2	141.3 %
MB-4	168.6	259.2 %

Evaluation: completion time

Against a sequential schedule

- mVM provides the best speedups
- MB not always reliable
 - Blind parallelization!
- 54% speedup against 36% for MB
 mVM is 30% faster than MB

Scheduler	mVM	MB-2	MB-3	MB-4
Mean migration time (sec.)	212,8	295,9	394,6	479,4
Average speedup (%)	54,18 %	36,42 %	15,94 %	-2,64 %

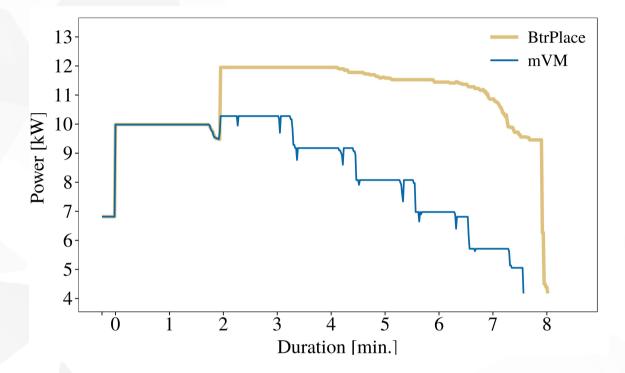

09/12/15

Scheduling Live-Migrations for Fast, Adaptable and Energy-Efficient Relocation Operations

Evaluation: minimizing the energy consumed

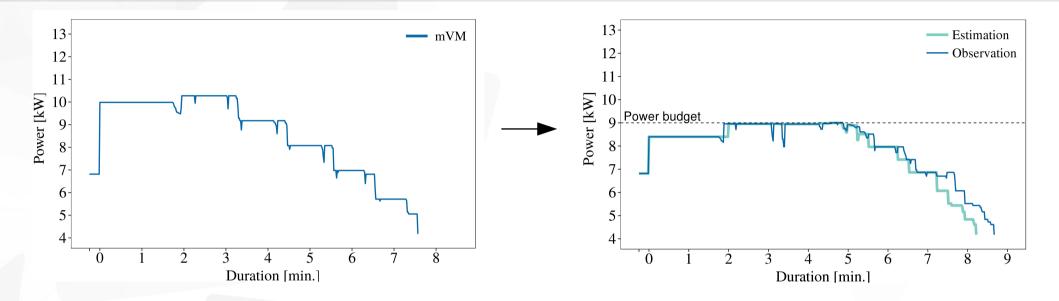
Decommissioning scenario:

- 3 * 24 => 72 servers
- **2** source \rightarrow 1 destination
- 2 VMs per source server
 => 96 migrations
- 10 Gbit/s aggregation switch



09/12/15

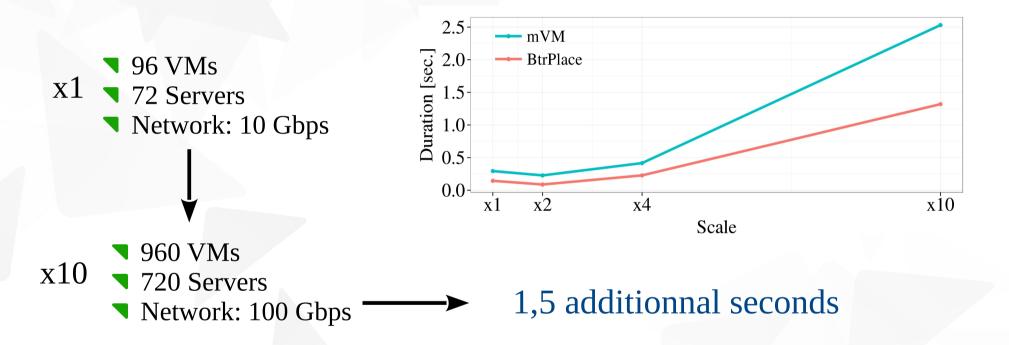
Grid'5000


Evaluation: minimizing the energy consumed

mVM behavior:

- Migrate VMs 10 by 10, an optimal parallelism
- Release nodes at the earliest to save energy
- 21.55% of energy saved compared to BtrPlace

Evaluation: 9 kW power capping PoC



Cap the instantaneous power usage to fit renewable energy availability

- mVM deductions:
 - Boot actions postponed
 Restricted parallelism
- Theoretical VS Real:
 - 93 % accuracy for migration durations
 - **▼** 6 % longer (32 sec.) than the estimation

Evaluation : scalability

Scheduling problem: NP-Hard

Larger scale: Partitioning migrations. *e.g.* per cluster / rack / blade / ...

09/12/15 Scheduling Live-Migrations for Fast, Adaptable and Energy-Efficient Relocation Operations

19/22

Conclusion

09/12/15

Migrations scheduling

mVM considers network and memory loads

- Accurate migrations scheduler (> 90 %)
- Migrations complete 20.4 % faster than Memory Buddies

Controlable via high level constraints

- Synchronization, sequentialization / parallelization
- Energy aware management
 - « power capping » constraints
 - 21 % energy saved during a decommissioning scenario

Future works

- Joint placement and scheduling decisions.
- Manage user-defined downtime as a constant into the model.
- Consider a shared management & production network.

Contact

Vincent KHERBACHE

- vincent.kherbache@inria.fr
- http://vincent.kherbache.fr
- mVM is open source
 - shipped within
 - http://www.btrplace.org
- Reproducibility
 - https://github.com/btrplace/migrations-UCC-15

BtrPlace

Tutorials

https://github.com/btrplace/scheduler/wiki

09/12/15

Université

Soph<mark>ia</mark> Antipolis

Claifie

nice

22/22