
Hotspot Mitigations for the Masses

Fabien Hermenier
Nutanix

fabien.hermenier@nutanix.com

Aditya Ramesh
Nutanix

aramesh@nutanix.com

Abhinay Nagpal
Nutanix

anagpal@nutanix.com

Himanshu Shukla
Nutanix

hshukla@nutanix.com

Ramesh Chandra
Nutanix

ramesh.chandra@gmail.com

ABSTRACT

In an IaaS cloud, the dynamic VM scheduler observes and mitigates

resource hotspots to maintain performance in an oversubscribed

environment. Most systems are focused on schedulers that fit very

large infrastructures, which lead to workload-dependent optimisa-

tions, thereby limiting their portability. However, while the number

of massive public clouds is very small, there is a countless number

of private clouds running very different workloads. In that context,

we consider that it is essential to look for schedulers that overcome

the workload diversity observed in private clouds to benefit as

many use cases as possible.

The Acropolis Dynamic Scheduler (ADS) mitigates hotspots in

private clouds managed by the Acropolis Operating System. In this

paper, we review the design and implementation of ADS and the

major changes we made since 2017 to improve its portability. We

rely on thousands of customer cluster traces to illustrate the mo-

tivation behind the changes, revisit existing approaches, propose

alternatives when needed and qualify their respective benefits. Fi-

nally, we discuss the lessons learned from an engineering point of

view.

CCS CONCEPTS

•Computer systems organization→Cloud computing; • Soft-

ware and its engineering→ Virtual machines; Scheduling.

KEYWORDS

Cloud Computing, Virtual Machines, Dynamic Scheduling

ACM Reference Format:

Fabien Hermenier, Aditya Ramesh, Abhinay Nagpal, Himanshu Shukla,

and Ramesh Chandra. 2019. Hotspot Mitigations for the Masses. In ACM

Symposium on Cloud Computing (SoCC ’19), November 20–23, 2019, Santa

Cruz, CA, USA. ACM, New York, NY, USA, 12 pages. https://doi.org/10.1145/

3357223.3362717

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

SoCC ’19, November 20–23, 2019, Santa Cruz, CA, USA

© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6973-2/19/11. . . $15.00
https://doi.org/10.1145/3357223.3362717

1 INTRODUCTION

A key goal of cloud management is to minimise the cost of operat-

ing the cloud, and the VM scheduler is an important component

that helps achieve this goal. The VM scheduler uses its precise un-

derstanding of how resources (i.e. CPU, memory, I/O) are consumed

by VMs to compute placements that satisfy customer service level

agreements while achieving a high consolidation ratio.

Dynamic scheduling is a hot topic since the last decade and

numerous solutions have been proposed [5, 19, 23, 43, 47–49]. A

dynamic VM scheduler typically reconsiders the VM placement

with live migrations [10] to mitigate hotspots. Traditionally, the

cloud community focuses on dynamic schedulers for public clouds.

The challenges are then to propose a solution that is effective for

a typical workload running on the largest possible infrastructure.

This may lead to workload dependent optimisations and limit their

usefulness outside the tested scenario. Also, while the number of

massive public clouds is very small, 73% of companies use at least

one private cloud [37]. Those infrastructures are usually small in

terms of nodes and host a large variety of workloads [8]. Therefore,

we consider that it is essential to look for schedulers that support

workload diversity to benefit as many users as possible.

ADS is the dynamic scheduler running inside the private clouds

managed by the Nutanix operating system to mitigate hotspots. As

it is not possible to predict the practical workload that is running

inside private clouds, ADS is expected to support workload diversity.

In this paper, we present the design, the implementation and the

enhancements we made to achieve this objective.

This includes a review of existing approaches, their adaptations

to make them fit private cloud workloads and the proposal of al-

ternative solutions. The changes are motivated from practical ob-

servations and qualified individually by replaying the mitigation

requests emitted by 2,668 customer clusters. The benefits are dis-

cussed globally but also at the scale of a single cluster to highlight

the risk of double-edged changes that may be globally valuable

but locally unacceptable. Finally, we review how tackling workload

diversity impacted the engineering process of ADS.

The rest of the paper is structured as follows. Section 2 presents a

background of private clouds and the hyper-convergence paradigm.

Section 3 discusses the initial design and implementation of ADS.

Section 4 reviews and qualifies the enhancements made to support

workload diversity. Section 5 discusses the lesson learned at an

engineering level. Section 6 presents related work and Section 7

concludes our findings.

SoCC ’19, November 20–23, 2019, Santa Cruz, CA, USA Fabien Hermenier, Aditya Ramesh, Abhinay Nagpal, Himanshu Shukla, and Ramesh Chandra

2 PRIVATE CLOUDS

We present here the design of the Nutanix hyper-converged system

that is used to operate private clouds. We then characterise the

clusters and the workloads of these private clouds to highlight their

differences with regards to public cloud infrastructures and their

diversity.

2.1 Hyper-converged infrastructures

Traditionally, private clouds adopted a three-tier architecture where

the compute-tier that runs VMs is attached to a centralised storage-

tier via the network tier. In a hyper-converged system, the tiers

are not separated. Each node of the cluster serves the compute

and memory requirements of the VMs running on it, and a part of

the storage requirements for all the VMs on the cluster. The local

storage of the nodes is pooled together by a distributed storage

controller to present a unified storage system to the running VMs [6,

17]. To provide data locality, the controller places data of VMs on

the same disks as the node where the VM resides.

The distributed storage controller consists of one controller VM

per node. Each controller manages the local storage on its node

and coordinates with the controllers on other nodes to implement

storage functions such as data replication, tiering of data across

NVMe, SSD, and HDD tiers, and performing optimisations such as

compression, deduplication, erasure coding, reading from remote

caches, and caching frequently accessed remote data on local hot

(i.e NVMe and/or SSD) storage.

The functionalities provided by the controller VMs may be CPU-

intensive, especially for random I/O workloads. The performance

of an I/O-intensive VM can then be limited by the CPU available

to the controller VM serving its I/Os and the contention for CPU

among the controller and the user VMs.

2.2 Workload characterisation

Each customer may subscribe to pulse, a diagnostic call-home sys-

tem that shares basic and anonymised system-level information to

the support teams. All of the collected calls are stored inside a data

warehouse and can be used by engineers to improve the product.

We report here a characterisation of the workloads managed by the

Nutanix stack using a portion of the pulse database. This dataset

aggregates 602 customer clusters that used ADS between October

6, 2018 and March 3, 2019. We report here a characterisation of the

workloads managed by the Nutanix stack. Overall, these clusters

accumulate 5,389 nodes running 101,762 VMs. Each entry in the

dataset reports the state of a unique cluster at the moment a hotspot

is detected.

2.2.1 Cluster sizing. Figures 1a and 1b show the distributions of

cluster size and number of VMs per node, respectively. Figure 1a

reports that the clusters tend to be small. The median size is 4

nodes, 12% have 10 nodes or more, while the biggest cluster in the

dataset is 43 nodes. Figure 1b shows a median number of 13 VMs

per node, 4% having at least 50 VMs per node. Such numbers are

explained by the segment occupied by private clouds. Private clouds

are single-tenant, and are built to maximise performance per rack

using powerful nodes (48 logical cores and 100 GB RAM per node on

average for this dataset). With such hardware, small-sized clusters

are enough to support the IT requirements of small and medium-

sized businesses. Accordingly, private clouds differ fundamentally

from public clouds that are multi-tenant infrastructures designed to

grab as many tenants as possible, leading to clusters having tens of

thousands of nodes, possibly inside a single scheduling space [45].

0.00

0.25

0.50

0.75

1.00

0 10 20 30 40

Nodes

C
D

F

(a) Nodes per cluster

0.00

0.25

0.50

0.75

1.00

0 25 50 75 100

VMs per node

C
D

F

(b) Consolidation ratio

Figure 1: Overview of the cluster size

The de-facto standard limit for a single cluster is 64 nodes [15, 46].

When a workload needs more nodes, customers spread it over mul-

tiple clusters and a single management pane hides the partitioning

to expose a single infrastructure. For example, the biggest public

customer running ADS uses more than 2,000 nodes grouped into

32-node clusters. In this context, despite a unique management

pane, some services like the dynamic scheduler may be fenced to

their respective cluster.

2.2.2 Workload analysis. Figure 2a summarises the distribution of

the cluster loads. We first observe that in 75% of the clusters, the

CPU cores are oversubscribed. The median load is 135% (i.e. 1.35

vCPUs per logical core), 10% of the clusters load their cores to at

least 247% with the highest load being 901%. While oversubscribing

cores is usually not permitted in public clouds for performance

isolation reasons, it is typical in private clouds. In a private cloud,

the users control their environment, and thus a best effort CPU

allocation based on the VM practical usage is valuable to increase

the cluster hosting capacity. We also observe that the memory is

more heavily used than CPU and I/O resources. Memory require-

ments are usually exaggerated as dynamic memory allocation is not

encouraged in production clusters while CPU and I/O resources are

allocated on demand. Finally, the global load per resource appears

moderate: the median CPU and I/O loads for the clusters are 25.25%

and 1.38% respectively. This is expected in an enterprise cluster as it

is sized to support the simultaneous failure of one or two nodes. A

cluster with a few nodes appears then to be oversized with regards

to its nominal state.

Figure 2b depicts the distribution of the resource load for the

VMs normalised to their hosting node. The load illustrates that

a majority of the VMs consume a few resources and a very few

VMs consume a significantly large amount of resources, e.g. 99%

of the VMs consume at most 13% of their host CPU while 0.002%

are consuming at least 50%. The very low number of huge VMs is

justified by the increase of the node capacity, especially in terms of

CPU cores, that exceeds the vast majority of VM requirements.

Figures 3a, 3b and 3c depict the Spearman correlation between

the resources used by a VM, a node and a cluster. We observe that

the correlations between the resources allocated dynamically are

SoCC ’19, November 20–23, 2019, Santa Cruz, CA, USA Fabien Hermenier, Aditya Ramesh, Abhinay Nagpal, Himanshu Shukla, and Ramesh Chandra

that removes the hotspot while satisfying the resource demands and

placement constraints for all VMs. It is computed using a specialised

version of the BtrPlace VM scheduler framework [23].

The plan executor executes the mitigation plan by interfacing

with the hypervisors of the nodes to migrate the selected VMs. The

migration tasks are done optimistically without blocking existing

user operations and can run across crashes.

3.3 Implementation overview

Here, we first present an overview of BtrPlace, the VM scheduling

framework that is used as a backend for the mitigation planner. We

then discuss how the mitigation service is built on top of it.

3.3.1 BtrPlace basics. BtrPlace is an extensible VM scheduling

framework that computes (i) a placement for VMs that satisfies

their resource demand, and (ii) a schedule of actions to achieve

the new placement [23]. The extensibility is provided by the use of

Constraint Programming (CP) [38]. CP solves combinatorial prob-

lems, which are modelled by stating constraints (logical relations)

that must be satisfied by the solution. The solutions are computed

by browsing a search tree built lazily and pruned by the filtering

algorithm of each constraint.

BtrPlace placement decisions are customised through satisfaction-

oriented constraints addressing domain-specific concerns. Also, one

objective constraint is used to score to each computed solution and

tells the CP solver to compute the solution leading to the best score.

The optimisation phase is incremental: once a solution is computed,

the solver uses its cost as a bound to state a new relation asking

for a solution with a better score. This process is repeated until

the solver browsed the search tree, proving the solution optimality.

Accordingly, if a plan is computed, BtrPlace can prove the solution

is the best. If no plan is computed, BtrPlace can prove that the prob-

lem is unsolvable or that it was not able to state about the problem

feasibility during the allocated time. In the latter case, the problem

is considered undecidable. This status depicts the phase transition

in which the probability to find that there is a solution decreases

from 1 to 0 as the constraints become increasingly tight.

During the early development stage of the scheduler, different

strategies and heuristics were tried but none were generic enough

to capture all of the initial use cases. Accordingly, an exact solution

appeared desirable to overcome the workload diversity. However,

the VM placement problem is NP-hard and the solving time in-

creases exponentially with the number of nodes and VMs. The

challenges were then to understand the problem characteristics,

model it using appropriate constraints and to implement domain-

specific branching strategies to guide the solver efficiently through

the search tree, avoiding as much as possible a phase transition for

the typical problems we have to solve.

3.3.2 Modelling the desired cluster state.

Modelling hyper-convergence. In a non-hyper-converged system,

a CPU-intensive VM and an I/O-intensive VM can be co-located

on the same node since they are not contending for the same re-

source. In a hyper-converged system, by contrast, the storage con-

troller serves I/O requests for the running VMs using the node’s

CPUs shared with running VMs, which can result in contention

between CPU-intensive and I/O-intensive VMs. For example, a CPU-

intensive VM reduces the CPU available to the storage controller,

which can adversely impact the performance of I/O-intensive VMs

on the same node. As a result, a challenge in modelling hyper-

convergence is to consider that the host CPU serves both the VM

vCPUs and the VM I/Os without any strict reservation.

The data collector generates time-series data by periodically

gathering resource usage from different components. It first gath-

ers the CPU and memory capacity of every node. It normalises the

CPU measurements to cycles per second to fit hardware hetero-

geneity. For nodes with SMT, CPU capacity is increased by 10%

(instead of 100%) since logical CPUs provide fewer resources than a

physical CPU. The 10% value is conservative and was chosen from

an analysis of customer workloads.

The data collector also measures the CPU usage of every VM by

aggregating the CPU usage of the threads that constitute the VM

and the threads virtualising the I/O devices such as storage, network,

and console. The memory usage is obtained from its configuration

size as the hypervisor does not support memory overcommit.

The data collector measures the I/O load of a VM by measuring

the CPU used by the storage controller to serve the VM’s I/O re-

quests. For this purpose, the storage controller tracks the time spent

to serve the storage request from every VM. The collector couples

this information with measurements of the CPU used by the storage

controller to approximate the controller’s CPU consumption for

each storage entity.

The storage controller running on each node may consume CPU

for reasons other than serving I/O for VMs, for example, to perform

storage garbage collection. This additional CPU usage of the stor-

age controller is considered as a fixed cost since this overhead is

incurred regardless of the workload that is running on the cluster.

The time-series data gathered by the collector during the past

two hours are used to forecast the VM resource usage and the

node capacity for the next 30 minutes using double-exponential

smoothing [30]. This approach removes noise and projects a trend.

Modelling hotspot mitigation. The resource usage of VMs running

on a contended node does not necessarily match their demand, as

the observed values report a lower bound. After a migration, a

VM may then start consuming more resources, possibly triggering

another hotspot to be mitigated by the next call to ADS. To reduce

the probabilities of this hysteresis effect, the values of CPU and

storage CPU consumption for a VM running on a contented node

are artificially increased, by 5% and 20% respectively. These values

were computed empirically—choosing higher values resulted in

more unsolvable problems as the resource constraint is more likely

to be violated.

3.3.3 Mitigation objective. ADS mitigates observed hotspots us-

ing VM migration while minimising the data transfer cost.

The migration cost of a VM consists of two parts : (i) the cost of

data transferred over the network as part of the migration process

and (ii) the cost of additional data transferred over the network

after the migration, due to the impact of migration of storage for

maintaining data locality.

The first part of the cost is due to copying of the VM’s memory

pages from the source node to the target node; this can be done by

a pre-copy algorithm [10] where the pages are copied before the

Hotspot Mitigations for the Masses SoCC ’19, November 20–23, 2019, Santa Cruz, CA, USA

VM is migrated to the target node, or by a post-copy algorithm [25]

where the VM is first migrated and the pages are copied later. AHV

uses a pre-copy algorithm because it provides both predictable and

higher performance after migration, and avoids VM failure if the

network between the source and destination nodes fails during the

migration. ADS estimates the first cost for a VM migration as the

amount of VM memory.

The second part of the cost represents the temporary loss of

data locality as the VM’s I/O requests go to a new local storage

controller that has a lower hit rate in its local data storage. ADS

estimates the second cost as the VM’s I/Os per second that were

satisfied from the hot tier.

The total migration cost of a VM accumulates the normalised

memory transfer and data locality costs. Let M and D be the maxi-

mum memory size and the maximum data locality of any VM in the

cluster, respectively. Letm(i) and d(i) be the memory size and the

data locality factor for VM i , respectively. Equation (1) computes

the cost c(i) of migrating a VM i . The solver objective is then to

minimise the sum of all the migration costs.

c(i) =
m(i)

M
+

d(i)

D
(1)

The branching strategies used to guide the CP solver behind

BtrPlace in the search tree helps at minimising the migration and

the resource imbalance. A branch in the search tree selects a VM

to place and a node to place it on. If a branch leads to violation

of a constraint, BtrPlace backtracks and tries another branch. The

branching strategies for traditional greedy heuristics involve pick-

ing a random node for every VM or involves a worst-fit decrease

(WFD) heuristic. The random selection is fast and performs well

when there are many VMs that are small compared to the nodes.

WFD is efficient when the VMs to place have a single dimension or

a uniform load among the dimensions. As discussed earlier, private

cloud workloads are non-homogeneous and these strategies led to

low-quality solutions in some cases.

The branching strategy of ADS is a variant of WFD. It scores

nodes by a triplet consisting of the CPU, memory, and storage-

controller CPU load; and scores VMs by a triplet consisting of

the CPU, memory, and storage-controller CPU resource consump-

tion. ADS considers the global load of a node (respectively global

consumption of a VM), as the highest load (respectively highest

consumption) among the three dimensions in the triplet. This re-

flects that having a node saturated on one dimension has the same

consequences on the hosting capacity as being saturated on every

dimension. The solver selects VMs in descending order of their nor-

malised global load. By default, it tries to leave a VM on its current

node to reduce migration cost. Otherwise, the solver tries the node

whose global load with the target VM running on it will be the

lowest. The rationale is to co-locate VMs having complementary

workloads to reduce the node local imbalance thus maximising its

usability (see Figure 5).

4 LESSONS FROM THE WILD

ADS has been enabled in production since November 2016. Over

time, we have improved its portability from our understanding of

the practical problems that were solved in customer clusters. We

discuss here our findings and the enhancements that were made.

VM resource profile Node 1 Node 2

C
P

U

m
em

o
ry

I/
O

50%

L
o
ad

C
P

U

m
em

o
ry

I/
OC

P
U

m
em

o
ry

I/
O

60%

L
o
ad

40%

80%

Figure 5: Node selection principle. Node 1 is initially least

globally loaded than Node 2 but the latter is a better candi-

date for the VM to reduce the resulting global load.

To qualify the changes, we replay the mitigation requests emitted

by customer clusters using different versions of ADS. The dataset

of customer calls has been extracted from the pulse knowledge

base. It corresponds to calls from 2,668 clusters collected between

December 2017 and April 2019.

4.1 On the use of an exact approach

We discuss here the benefits of an exact approach to compute and

validate the quality of the mitigation plans. Finally, we review the

recurring question of the scalability of this approach in the context

of private clouds.

4.1.1 The benefits of the optimisation phase. The optimisation

phase in ADS is incremental. Each time a solution is computed,

it looks for a better solution until a timeout is reached or the entire

search tree has been explored. Even if ADS can compute multiple

solutions, the practical benefits are not guaranteed: once the first

solution is computed, ADS may not be able to compute a better

solution within the time limit and a new solution may not reduce

the number of migrations significantly.

We review here the practical benefits of the optimisation phase.

For evaluation purpose, the first computed solution, the last com-

puted solution and the response time of the service are tracked.

The overall response time may differ from the time to compute the

last solution as the solver may try to improve the solution without

finding one. This situation can happen if it either reaches the solver

timeout or proves the optimality of the last solution.

When the solver stops at the first solution, the solver acts as a

meta-heuristic as the filtering and the propagation mechanisms

explore the search space more efficiently than a greedy heuristic.

Within ADS, the branching strategy makes it behave like a Worst

Fit heuristic (Section 3.3.3).

0

5

10

15

90 93 94 95 99

percentiles

ti
m

e
 (

s
e
c
.)

first solution last solution response time

(a) solving durations

0.00

0.25

0.50

0.75

1.00

0 25 50 75 100

migration reduction (%)

c
o
m

p
le

m
e
n
ta

ry
 C

D
F

(b) saved migrations

Figure 6: ADS optimisation capabilities

Hotspot Mitigations for the Masses SoCC ’19, November 20–23, 2019, Santa Cruz, CA, USA

speed up the solving process for large clusters. All of the unit tests

and the feedback from the quality assurance team were positive for

this approach. However, at the end of 2018, pulse flagged problems

suspiciously proved unsolvable and the engineers concluded it was

over-filtering due to an aggressive problem reduction.

The first improvement consisted in using the repair mode ini-

tially and to solve the problem again in the rebuild mode in case

of a proven unsolvable problem. This solving mode is named re-

pair + rebuild. Figure 8 shows the percentage of solved problems

depending on the solving mode. As expected initially, the rebuild

mode provides the highest solving capacities. More importantly,

this comparison also confirms that the repair mode over-filters sig-

nificantly. Compared to the rebuild mode, it prevented to mitigate

hotspots for 2.04 percent points of the clusters (54 clusters among

the dataset). The repair + rebuild mode fixed the over-filtering by

increasing the solving capacities by 2.62 percent points compared

to repair. Unexpectedly, it also outperformed the rebuild mode. It

appears that the newly solved problems are undecidable in the re-

build mode but easier to solve in the repair mode thanks to the

reduction that moved the solver out of phase transition. Overall,

the repair + rebuild mode exhibits the best results despite solving

some problems twice. The first pass in the repair mode computes

quickly a solution if it exists, countering some phase transitions

in the solver. Finally, the switch to the rebuild mode counters the

over-filtering of repair.

The repair and the repair + rebuild mode lead to plans having

1.62% fewer migrations than in the rebuild mode. As the solver

considers fewer VMs in the repair mode, the number of migrations

is already lowered resulting in a smaller search space. Thus, the

solver is more efficient at minimising the migrations.

75

80

85

90

95

100

rebuild repair repair + rebuild

solving mode

%
 o

f
so

lv
ed

 p
ro

b
le

m
s

Figure 8: Solved problems depending on the solving mode.

One year after the deployment of repair + rebuild feature, two

suspicious undecidable problems (not in the present dataset) from

customer cases came to the support team. The post-mortem analysis

reported that they were undecidable in the repair mode but solved

in the rebuild mode. Unexpectedly, the reduced problems placed the

solver in phase transition and became much harder to solve despite

being smaller. As a result, the solver wasted all the allotted time

in the repair phase without having the possibility to switch to the

rebuild phase. The solving mode was then enhanced to bound the

duration of the repair phase. The rationale was to identify a solver

stuck in the phase transition to switch automatically to the rebuild

mode, hoping for a possible resolution. The enhancement was con-

sidered double-edged as on the current dataset, this improves the

number of solved problems by 0.08% but reduces the quality of the

mitigation plans by 0.23%. In practice, as ADS should target diverse

workloads, the reduction of the solution quality was acceptable.

Furthermore, the problem was initially reported by a customer that

considered correctly that a solution existed. Accordingly, it was

critical to reach this decision capability.

As of today, the revisited repair + rebuild solving mode appears

satisfactory. However, the use of a timer to catch the phase transi-

tion is double-edged. It is always possible to face a workload that

can be solved in more than the allotted time for the repair phase

while being undecidable in the rebuild mode. A planned change

is to solve the problem in the repair and the rebuild modes in par-

allel using a portfolio approach [1]. This removes the need for a

mode switch and enables the two solvers to cooperate during the

optimisation phase. While this change is easy to perform, it is hard

to qualify as ADS runs inside the management VM along with the

user VMs on every node. The parallel resolution requires more CPU

and memory from the management VM and excessive resource us-

age may reduce the user VM performance and the overall hosting

capacity of every cluster while benefiting a very few use cases.

4.2.2 Placement problem or scheduling problem ? A VM scheduler

may support cluster defragmentation to increase the hosting ca-

pacity. For example, a mitigation service may free up resources

from nodes without the hotspot via migrations so that VMs run-

ning on the node with the hotspot can migrate to those nodes.

This feature requires to consider the VM placement problem as a

Resource-Constraint Project Scheduling Problem [4] (RCPSP) instead

of a Vector Packing Problem (VPP) to schedule the migrations and

to infer their dependencies.

RCPSP is harder to implement than VPP as it integrates the tem-

poral dimension on top of a spatial problem. It is also harder to solve.

Finally, if the scheduler uses a heuristic or a time-bounded exact

resolution, the quality of the computed solution may be reduced

due to unjustified defragmentations.

An analysis of some hard to solve problems flagged by pulse

exhibited that the solver was stuck in a region of the search tree

devoted to the variables that compute the action schedule. As the

mitigation problems exhibit mostly a moderate cluster load (Fig-

ure 2a) and local hotspots (Figure 2b), resource fragmentation may

not be problematic and the need to support cluster defragmentation

may not be valuable.

To assess the practical benefits of supporting cluster defragmen-

tation, the hotspot mitigation problems were solved without the

ability to defrag the cluster. When enabled, ADS solves mitigation

problems for 2.41% more clusters without creating any undecidable

problems. Figure 9a reports that the response time is not globally im-

pacted. Figure 9b reports that this feature does not impact globally

the quality of the computed solutions as the size of the mitigation

plans seem unchanged. However, despite the global quality staying

the same, the solution quality for some problems varies. For less

than 1% of the requests, the cluster defragmentation feature reduces

the size of the plans by 2 but for 2% of the problems, it increases

the plans by at least 75% and up to 96%.

This experiment exhibits that the cluster defragmentation fea-

ture is required despite having a few corner cases. While it increases

significantly the capacity of ADS at supporting more workloads, it

SoCC ’19, November 20–23, 2019, Santa Cruz, CA, USA Fabien Hermenier, Aditya Ramesh, Abhinay Nagpal, Himanshu Shukla, and Ramesh Chandra

0

10

20

30

92 95 99 100

percentiles

re
sp

o
n

se
 t

im
e

(s
ec

.)

defragmentation
disabled

enabled

(a) Response time

0

50

100

150

92 95 99 100

percentiles

m
ig

ra
ti

o
n

s

defragmentation
enabled

disabled

(b) Global impact on the mitiga-
tion plans

Figure 9: Impact of the defragmentation feature

reduces the solution quality for a few previously supported work-

loads. The quality loss is however acceptable as it is limited to some

outliers and it does not prevent the service to compute a solution.

4.2.3 Decision capabilities and performance overhead. Mid 2017, a

customer case reported undecidable mitigation problems for heav-

ily loaded clusters with a few big VMs. Initially, BtrPlace used a

specialised version of vector packing constraint that was optimised

for the synthetic dataset used in their evaluation. This dataset com-

prised of large problems with thousands of homogeneous nodes

but a few, mostly homogeneous, VMs per node. The constraint was

specialised for speed and some filtering capacities were removed

as they appeared being not valuable.

Section 2.2.2 discussed heterogeneous workloads. Thus, this op-

timisation inside BtrPlace was not fully appropriate for private

cloud. We enhanced the filtering capacities with knapsack filtering

to handle non-homogeneous workloads. This filtering pro-actively

denies VM assignments that will not fit in nodes without having to

test and backtrack in case of failure [39]. Knapsack filtering runs in

linear time and is effective only when the load on a node is high

enough to deny some VMs. For best results, it should be triggered

every time the solver places a VM. However, as the clusters are

typically lightly loaded, the filtering is not always effective. The

algorithm needs also to maintain one ordered list of candidate VMs

per dimension for each node, which is costly in terms of CPU and

memory resources and despite the first implementation improving

the filtering capabilities, the service slowdown was unacceptable.

The best compromise between performance overhead and filter-

ing capabilities was achieved with the knapsack filtering enabled

when the solver observes that a VM cannot fit on a node and the

remaining space is smaller than the biggest VM to place.

We report here the benefits of the knapsack filtering by running

the problems with and without the feature. The knapsack filtering

reduced the undecidable problems to 0.56% from 0.86% and 50%

of the newly solved problems had solutions. While the absolute

benefit can be considered small, it enables ADS to address harder

problems coming from unsupported workloads. It also contributes

to increasing the hosting capabilities and reduce the total cost of

ownership for some customers.

Figure 10a reports the response time reduction when the knap-

sack filtering is enabled and Figure 10b reports the number of saved

migrations. We observe again that the knapsack filtering exhibits

corner cases. 0.05% of the problems are solved up to 15 seconds

slower and 4% are solved at least 15 seconds faster. 0.05% of the

problems led to up to 11 additional migrations while 0.05% saved

0.01

1.00

−10 0 10 20 30

duration (sec.)

C
D

F

(a) Response time reduction

0.00

0.25

0.50

0.75

1.00

−10 0 10 20

migrations

C
D

F

(b) Saved migrations

Figure 10: Benefits of the knapsack filtering on the solved

mitigation requests

at least 19 migrations. Again, here, the slowdown and the quality

reduction is limited to a very few outliers and more importantly, it

does not violate the SLO of ADS.

4.3 Practical effectiveness

The previous evaluations highlighted the theoretical performance

of ADS in terms of latency, saved migrations or solving capabilities

for customer workloads.

Assessing the practical performance in live conditions is much

more complex as a/b testing is not possible. Furthermore, with

volatile workloads and dynamic allocation of resources, a simple

observation of the cluster state before and after a mitigation may

be misleading. For example, regardless of what ADS concluded, a

hotspot can disappear on its own when VMs are shut down by their

users or when the workload running within the VM decreases. The

opposite scenario is also possible.

The current method to qualify practical effectiveness of ADS

consists in reporting if there is a hotspot after it has applied the

mitigation plan. Whenever ADS computes a theoretically viable

mitigation plan, there are no more observable hotspots 73.28% of

the time once the plan is applied. When ADS states that there is no

solution, there are no more observable hotspots only 12.24% of the

time once the plan is applied. We then consider that ADS reduces

the hotspots by a factor of 6.

We consider that a practical mitigation rate of 73.28% is satis-

fying, but it matters to discuss why 26.72% of the time ADS still

reports at least one hotspot remaining. First, as discussed before,

the workload volatility may have created a new hotspot. Second,

the performance boost that is used to reduce the hysteresis effect

may be too low to prevent future mitigations (see Section 3.3.2)

and several mitigation rounds may still be required to overcome

consecutive hotspots to reach stability. A bigger boost could speed

up the convergence but the risk is to increase the probabilities of

creating an unsolvable problem. Finally, using a higher hotspot

threshold would also increase the success rate but also miss pos-

sible performance issues that could have been mitigated because

that threshold was not reached.

For the 12.24% of the hotspots that disappear without interven-

tion of ADS, we consider that a non-zero value is explained by the

workload volatility where hotspots may disappear on their own.

Furthermore, when ADS states that the hotspot cannot be mitigated,

the operator is advised to lower the workload by turning off low

priority VMs which can result in the removal of the hotspot before

the next health check.

Hotspot Mitigations for the Masses SoCC ’19, November 20–23, 2019, Santa Cruz, CA, USA

5 LESSONS AT THE ENGINEERING LEVEL

We previously motivated and discussed technical changes in ADS

since 2017. We discuss here what we learned at an engineering level

related to the implementation and maintenance concerns.

5.1 Working with an exact algorithm

5.1.1 The bootstrapping overhead. Developing on top of an exact

approach appeared to be harder than using heuristics, especially

at the early stage of ADS. Engineers were reluctant to try an exact

approach due to the possible response time and CPU/memory usage

but proof of concepts removed that concern.

The first issue was the need for theoretical background in com-

binatorial optimisation, in packing and scheduling problems in

particular coupled with the technical expertise of system designs.

Hence, it matters to find a compliant solver and to map properly

the theoretical model to the library capacity.

When a new feature is developed, the recurring question is about

the impact of a change in the model on the implementation scala-

bility, especially in the number of variables and constraints to add.

The objective is to control the time spent by ADS in the model

construction and the memory consumption of the solver that de-

pends on the number of variables. It matters also to ensure that

the modelling constraints fit exactly the practical needs to avoid

an over-engineered filtering algorithm that may introduce a costly

and unnecessary abstraction layer.

Finally, a lack of optimisation slows down the implementation by

orders of magnitude. Thus, the time spent to optimise the model and

the code is higher than when using a heuristic. Over the releases,

this time decreases as the engineer expertise increases, but the

scalability is always considered at the initial stage of any feature

design.

5.1.2 �ality self-assessment. Undecidable problems report a lack

of filtering capabilities. Their frequency is then a valuable indicator

that should be minimised. More importantly, their characterisation

help at prioritising the issue and its consequences against other

engineering tasks.

Contrary to a heuristic based scheduler, ADS can prove mathe-

matically that the problem has no solution or that the computed

solution is the best one according to the objective. This eases the

support cases as the engineers spend less time verifying the quality

of the computed plans and it is legitimate to argue for a cluster

expansion.

5.1.3 Composability helps. Constraints inside a Constraint Pro-

gramming (CP) solver are independent, their composition is both

deterministic and independent from their evaluation order. This

improves the scheduler flexibility and testability as each scheduler

feature is a plugin implemented using various solver constraints.

Each solver constraint comes with its filtering algorithm to prune

the search space. This brings valuable flexibility compared to other

exact approaches like mathematical programming. We use ad-hoc

constraints and filtering algorithms when the standard algorithms

are too generic and costly with regards to their practical use or when

it is not possible to exactly implement some features. Typically,

high-availability (see Section 3.1) is not implemented using the CP

model presented in [3] for scalability reasons but through a faster

heuristic embedded in a solver constraint and offering the same

composability.

5.2 It is all about the resource modelling

5.2.1 Validating a model accuracy is hard. Metrics like the response

time or provability qualify the implementation of ADS but cannot

validate the accuracy of the theoretical model. For example, the

proved unsolvable status is double-edged: despite the solver prov-

ing that it is impossible to satisfy simultaneously all the constraints,

the assumption is theoretical and solely related to the model that

defines an acceptable state for a cluster, especially with regards

to resource allocation. Accordingly, as the CPU and the storage-

controller resource allocation is dynamic and based on performance

counters, a pure resource assignment problem that is proved unsolv-

able may highlight an over-conservative allocation model. Besides,

when the model is modified, it is challenging to predict how the

change will affect the practical quality of ADS without running the

system using predefined, possibly biased, benchmarks.

The use of simulators like SimGrid [9, 26] have already been

discussed as a possibility to replay customer environments and to

ease qualifying the theoretical model. However, the simulator itself

must provide a model for hyper-converged environments and to

the best of our knowledge, no such simulator exists, possibly due to

the complexity of the task or the lack of reference environments. In

this circumstance, the challenge stays open as the modelling effort

and its qualification must be conducted first at the simulator level,

before being done at the scheduler level.

5.2.2 Thresholds, weighting functions: a love-hate relation-

ship. ADS is configured by some threshold values and weighting

functions, for example to state if a node has a hotspot or to measure

the performance boost induced by SMT. Threshold-based reasoning

helps the users at understanding what is happening when they are

related to observable metrics. At the engineering level, the use of

thresholds and weighting functions to calibrate the scheduler is

also convenient in the short term when it becomes tedious to model

objectively the interactions between the resources or to reconcile

different concerns. It finally eases testing if the thresholds are easy

to reproduce.

The recurring issue with model parameters is the impossibility

to find the values that fit all use cases. For example, some CPU

intensive workloads may exhibit performance issues well before

reaching the mitigation trigger point. The default values are defined

empirically from internal testbeds running different benchmarks

and when a range of values is possible, a conservative value is

picked to prevent an aggressive simplification. It is always possible

to change the configuration parameter without having to restart

ADS. This operation is performed manually by the support team

but customers are reluctant to move away from the default values

as they expect them to be workload agnostic.

Long term, we consider that it matters to reduce such configu-

ration parameters, first to minimise the calibration issues, second

because their coordinationmay lead to undesirable effects. However

private clouds allocate resources dynamically from low-level perfor-

mance counters and the complexity of the current hardware make

them unpredictable and complicates the definition of an accurate

and scalable scheduler model.

SoCC ’19, November 20–23, 2019, Santa Cruz, CA, USA Fabien Hermenier, Aditya Ramesh, Abhinay Nagpal, Himanshu Shukla, and Ramesh Chandra

The second approach is to look for learning methods to fit au-

tonomously the values to the workload. This approach is highly

desirable and has already been used successfully [28]. A/b testing is

however not possible in private clouds. Furthermore, populating

a training set per cluster to highlight its uniqueness may take too

much time given the size of the clusters, while the training algo-

rithms may be too resource intensive to run along with the user

VMs without impacting its hosting capacity.

5.3 Observations over assumptions

As discussed in Section 4.2, an enhancement may be double-edged

and the corner cases are complex to identify. A missed regression

may lead to numerous support cases that will impact customer

satisfaction or the engineer’s productivity for a long period. Ac-

cordingly, while it always matters to support more workloads, the

primary concern is to avoid performance regressions.

The work done on the scheduler is then as important as the work

done with pulse. The internal enhancements of ADS are driven from

an analysis of its behaviour in customer and internal clusters. This

approach appearedmore rewarding than the traditional code review

and testing systems to exhibit issues due to workload diversity.

A key development objective is to always work based on practical

data instead of assumptions. When a new feature is planned, one

of the first tasks is to verify if assumptions hold using pulse and to

deploy the missing data collectors if needed. This helps in validating

the potential benefits of the feature early in the development stage

and to validate with high confidence before the release.

The size and diversity of the dataset are also crucial to avoid any

bias. As discussed before, it improves the identification of double-

edged changes before the release. Furthermore, it increases the

engineer expertise about what is happening in practice on clusters

instead of relying on assumptions that misestimate reality.

One downside however, is that it tends to lower the absolute

impact of the improvements as over time, the changes target mostly

the outliers. For example, even though the improved filtering dis-

cussed in 4.2.3 was effective for only 0.4% of the customer clusters,

it plays a significant role to support all the workloads mixing very

big and very small VMs.

5.4 The scheduler ecosystem

The scheduling problems are hard to solve manually because of

the number of parameters and the number of entities involved.

It matters thus to provide tools to help the engineering teams at

debugging ADS. As of today, we estimate that half the engineering

time related to the scheduler development is spent on debugging

tools.

A dashboard reports daily performance indicators from the su-

pervised clusters. This accounts for the response status, timing

and the plan quality associated to every call of ADS. Furthermore,

scripts extract suspicious requests. Typically, these are the undecid-

able problems, the proved unsolvable problems and the mitigation

plans with a high number of migrations.

A significant number of customer cases are related to VMs that

seem to be migrated too often or when the notion of a hotspot is

unclear. The support team relies on a log analyser to retrace a cluster

load and the VM position over time to clarify any over-reaction. A

Web service also visualises a cluster state and can re-execute any

mitigation request using the last production code. This appeared to

be very helpful to instantaneously check if an observable issue was

already fixed.

Finally, ADS has a dedicated performance regression tool. The

test suite is populated by the mitigation requests in pulse and the

support tickets. It identifies the code changes that lead to perfor-

mance regression or improvements as the coverage of the legacy

tools (unit and functional tests) is not sufficient. The test suite

also contains scaled-up mitigation requests (see Section 4.1.2) to

anticipate possible scalability limits.

6 RELATED WORK

Workload characterisation of production systems. Cano et al.[8] al-

ready characterised enterprise cloudsmanaged by the Nutanix stack

in terms of infrastructure sizing and durability. Cortez et al. [11]

characterised the workload of Microsoft Azure, focusing on the VM

sizing and the submission queue. Mishra et al. [32] and Liu et al. [31]

characterised a Google cluster workload. Finally, Amvrosiadis et

al. [2] discussed the notion of workload heterogeneity and the im-

portance of supporting diversity in job schedulers. We discussed a

workload characterisation but we focused on thousands of private

clouds instead of one massive public cloud or clusters devoted to job

scheduling. We also highlighted the notion of workload diversity

but in the context of private clouds. More importantly, we discussed

what we have done at a production level with ADS to overcome

that diversity.

Job schedulers. Recent job schedulers explored scalable designs,

low latencies and efficient balancing [7, 11–14, 16, 18, 27, 34, 42,

45]. These works focused on computing the initial placement of

tasks or VMs depending on their description or past executions

while we discuss a dynamic scheduler for hyper-converged clouds

that mitigate hotspots from an observation of the workload. More

importantly, we highlight the challenge of being valuable to asmany

workloads as possible instead of supporting particular workloads

the best way possible. [7, 12–14, 18, 27, 34, 42, 45] addressed data-

locality as a part of a weighting function similar to our migration

cost. Cortez et al. [11] considered a remote centralised storage and

Medea [16] stated VM-VM anti-affinity was enough to address I/O

interference.

Dynamic scheduling. Past research on dynamic scheduling fo-

cused on three-tier architectures where compute nodes are separate

from the storage cluster. The seminal papers [5, 43, 48] focused on

dynamic consolidation of the compute tiers by only accounting for

the CPU and memory usage. Entropy [24] addressed the migration

cost and their dependencies and the follow-up BtrPlace [23] focused

on the scheduler flexibility. Xioa et al. [49] considered CPU, mem-

ory, and network resource usage to model the multi-dimensional

resource demands of VMs and then do rebalancing of VMs across

servers. A-DRM [47] performed load balancing while considering

the memory interference between the VMs. Gulati et al. [19] re-

viewed the VMWare dynamic scheduler. They presented the design,

the implementation and the lessons learned. The validation relied

Hotspot Mitigations for the Masses SoCC ’19, November 20–23, 2019, Santa Cruz, CA, USA

on a simulation and an internal testbed executing proof of con-

cept experiments. We review ADS from customer clusters and the

enhancements we made to overcome workload diversity.

For the storage tiers, virtual disks are balanced inside a cen-

tralised SAN to avoid hotspots. Basil et al. [20] built performance

models of storage devices to place or migrate the different virtual

disks on different LUNs. Pesto [21] leveraged [20] with a workload

injector instead of relying on passive observations of the storage

devices. Romano [36] also focused on building storage models with

heterogeneous hardware in responding to different workloads, and

workload interference on storage systems.

ADS was inspired by all of these works and especially BtrPlace

as it relies on its flexibility. However, all the above systems have

been built to rebalance either the compute part or the storage part

of the VMs inside three-tiers architecture where the compute and

the storage tiers are independent. To the best of our knowledge, the

current paper is the first to present a production-grade dynamic

scheduler that considers the interplay between storage and CPU

utilisation.

Resource interference management. Like ADS, other systems ex-

plored the problem of modelling dependencies and interferences

between resources. [12–14, 33, 50] focused on the detection and

the resolution of interferences between VMs or tasks consuming

shared resources, typically processor caches or memory buses. They

however did not consider the possible interferences with a local

storage controller. Singh et al. [41] monitored end-to-end appli-

cation resource usage on compute nodes, network switches, and

storage nodes to model the problem of migrating VMs and virtual

disks as a multi-dimensional knapsack problem. Although Har-

mony considers CPU and storage, it assumes however, that the

compute and storage clusters are independent of each other, and

considers VM and virtual disk migrations as independent actions.

AutoControl [35] dynamically modifies the CPU and I/O bandwidth

allocation of VMs to maintain application performance. However

it does not consider VM migrations to fix bottlenecks.

7 CONCLUSION

We presented ADS, the dynamic scheduler used inside private

clouds managed by Nutanix to mitigate hotspots inside thousands

of clusters.We discussed its design and its implementation. More im-

portantly, we reviewed how we handle workload diversity through

a qualitative analysis of significant changes we made since 2017.

The use of an exact solver slows down feature development but

provides valuable benefits in terms of solving capabilities, quality

self-assessment and extensibility while not causing any scalability

issues contrary to common belief. To the best of our knowledge,

the theoretical foundations of the placement problems prevent to

have a unique solution to completely overcome workload diversity.

The usefulness is improved over time through different optimisa-

tions targeting specific outliers. And while some improvements are

safe, others may be double-edged, requiring to establish a trade-off

between solving capabilities, response time and solution quality.

Tools are then crucial to exhibit the outliers, to understand their

particularities and to rely on an up-to-date knowledge base to test

the changes and identify any potential regressions.

ACKNOWLEDGMENTS

Many people contributed to the work described in this paper. Mem-

bers of the ADS team who contributed to this design and its imple-

mentation include Srinivas Bandi, Igor Grobman, Rahul Singh and

Hexin Wang. The final version was much improved by comments

from the anonymous reviewers and our shepherd.

AVAILABILITY

ADS develops extensions on top of BtrPlace that are specific to its

hyper-converged environments. However all the bug fixes and the

enhancements that are not tight to the Nutanix environments are

backported to BtrPlace to also benefit to the open-source commu-

nity.

REFERENCES
[1] Roberto Amadini, Maurizio Gabbrielli, and Jacopo Mauro. 2015. A Multicore

Tool for Constraint Solving. In Proceedings of the 24th International Conference
on Artificial Intelligence. AAAI Press, 232–238. http://dl.acm.org/citation.cfm?
id=2832249.2832281

[2] George Amvrosiadis, Jun Woo Park, Gregory R. Ganger, Garth A. Gibson, Elis-
abeth Baseman, and Nathan DeBardeleben. 2018. On the Diversity of Cluster
Workloads and Its Impact on Research Results. In Proceedings of the 2018 USENIX
Conference on Usenix Annual Technical Conference. USENIX Association, Berkeley,
CA, USA, 533–546. http://dl.acm.org/citation.cfm?id=3277355.3277407

[3] Eyal Bin, Ofer Biran, Odellia Boni, Erez Hadad, Eliot K. Kolodner, Yosef Moatti,
and Dean H. Lorenz. 2011. Guaranteeing High Availability Goals for Virtual
Machine Placement. In Proceedings of the 2011 31st International Conference on
Distributed Computing Systems. IEEE Computer Society, Washington, DC, USA,
700–709. https://doi.org/10.1109/ICDCS.2011.72

[4] J. Blazewicz, J.K. Lenstra, and A.H.G.Rinnooy Kan. 1983. Scheduling subject to
resource constraints: classification and complexity. Discrete Applied Mathematics
5, 1 (1983), 11 – 24. https://doi.org/10.1016/0166-218X(83)90012-4

[5] Norman Bobroff, Andrzej Kochut, and Kirk Beaty. 2007. Dynamic Placement of
Virtual Machines for Managing SLA Violations. In 2007 10th IFIP/IEEE Interna-
tional Symposium on Integrated Network Management. IEEE, 119–128.

[6] Dhruba Borthakur et al. 2008. HDFS architecture guide. Hadoop Apache Project
53 (2008).

[7] Eric Boutin, Jaliya Ekanayake, Wei Lin, Bing Shi, Jingren Zhou, Zhengping Qian,
Ming Wu, and Lidong Zhou. 2014. Apollo: Scalable and Coordinated Scheduling
for Cloud-scale Computing. In Proceedings of the 11th USENIX Conference on
Operating Systems Design and Implementation. USENIX Association, Berkeley,
CA, USA, 285–300. http://dl.acm.org/citation.cfm?id=2685048.2685071

[8] Ignacio Cano, Srinivas Aiyar, and Arvind Krishnamurthy. 2016. Characterizing
Private Clouds: A Large-Scale Empirical Analysis of Enterprise Clusters. In
Proceedings of the Seventh ACM Symposium on Cloud Computing. ACM, New York,
NY, USA, 29–41. https://doi.org/10.1145/2987550.2987584

[9] Henri Casanova, Arnaud Legrand, and Martin Quinson. 2008. SimGrid: A Generic
Framework for Large-Scale Distributed Experiments. In Proceedings of the Tenth
International Conference on Computer Modeling and Simulation. IEEE Computer
Society, Washington, DC, USA, 126–131. https://doi.org/10.1109/UKSIM.2008.28

[10] Christopher Clark, Keir Fraser, Steven Hand, Jacob Gorm Hansen, Eric Jul, Chris-
tian Limpach, Ian Pratt, and Andrew Warfield. 2005. Live Migration of Virtual
Machines. In Proceedings of the 2Nd Conference on Symposium on Networked
Systems Design & Implementation - Volume 2. USENIX Association, Berkeley, CA,
USA, 273–286. http://dl.acm.org/citation.cfm?id=1251203.1251223

[11] Eli Cortez, Anand Bonde, Alexandre Muzio, Mark Russinovich, Marcus Fontoura,
and Ricardo Bianchini. 2017. Resource Central: Understanding and Predicting
Workloads for Improved Resource Management in Large Cloud Platforms. In
Proceedings of the 26th Symposium on Operating Systems Principles. ACM, New
York, NY, USA, 153–167. https://doi.org/10.1145/3132747.3132772

[12] Christina Delimitrou and Christos Kozyrakis. 2013. Paragon: QoS-aware Sched-
uling for Heterogeneous Datacenters. SIGPLAN Not. 48, 4 (March 2013), 77–88.
https://doi.org/10.1145/2499368.2451125

[13] Christina Delimitrou and Christos Kozyrakis. 2014. Quasar: Resource-efficient
and QoS-aware Cluster Management. SIGPLAN Not. 49, 4 (Feb. 2014), 127–144.
https://doi.org/10.1145/2644865.2541941

[14] Christina Delimitrou, Daniel Sanchez, and Christos Kozyrakis. 2015. Tarcil: Rec-
onciling Scheduling Speed and Quality in Large Shared Clusters. In Proceedings
of the Sixth ACM Symposium on Cloud Computing. ACM, New York, NY, USA,
97–110. https://doi.org/10.1145/2806777.2806779

SoCC ’19, November 20–23, 2019, Santa Cruz, CA, USA Fabien Hermenier, Aditya Ramesh, Abhinay Nagpal, Himanshu Shukla, and Ramesh Chandra

[15] Edison Group. 2018. Hyper-Converged Infrastructure Portfolio Compar-
ison. https://www.emc.com/collateral/analyst-reports/edison-dellemc-hci-
competitive.pdf.

[16] Panagiotis Garefalakis, Konstantinos Karanasos, Peter Pietzuch, Arun Suresh, and
Sriram Rao. 2018. Medea: Scheduling of Long Running Applications in Shared
Production Clusters. In Proceedings of the Thirteenth EuroSys Conference. ACM,
New York, NY, USA, Article 4, 13 pages. https://doi.org/10.1145/3190508.3190549

[17] Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung. 2003. The Google File
System. In Proceedings of the Nineteenth ACM Symposium on Operating Systems
Principles. ACM, New York, NY, USA, 29–43. https://doi.org/10.1145/945445.
945450

[18] Ionel Gog, Malte Schwarzkopf, Adam Gleave, Robert N. M. Watson, and Steven
Hand. 2016. Firmament: Fast, Centralized Cluster Scheduling at Scale. In Pro-
ceedings of the 12th USENIX Conference on Operating Systems Design and Imple-
mentation. USENIX Association, Berkeley, CA, USA, 99–115. http://dl.acm.org/
citation.cfm?id=3026877.3026886

[19] Ajay Gulati, Anne Holler, Minwen Ji, Ganesha Shanmuganathan, Carl Wald-
spurger, and Xiaoyun Zhu. 2012. Vmware distributed resource management:
Design, implementation, and lessons learned. VMware Technical Journal 1, 1
(2012), 45–64.

[20] Ajay Gulati, Chethan Kumar, Irfan Ahmad, and Karan Kumar. 2010. BASIL:
Automated IO Load Balancing Across Storage Devices.. In FAST, Vol. 10. 169–
182.

[21] Ajay Gulati, Ganesha Shanmuganathan, Irfan Ahmad, Carl Waldspurger, and
Mustafa Uysal. 2011. Pesto: online storage performance management in virtual-
ized datacenters. In Proceedings of the 2nd ACM Symposium on Cloud Computing.
ACM, 19.

[22] Fabien Hermenier, Sophie Demassey, and Xavier Lorca. 2011. Bin Repacking
Scheduling in Virtualized Datacenters. In Proceedings of the 17th International
Conference on Principles and Practice of Constraint Programming. Springer-Verlag,
Berlin, Heidelberg, 27–41. http://dl.acm.org/citation.cfm?id=2041160.2041167

[23] Fabien Hermenier, Julia Lawall, and Gilles Muller. 2013. BtrPlace: A Flexible
Consolidation Manager for Highly Available Applications. IEEE Transactions
on Dependable Secure Computing 10, 5 (Sept. 2013), 273–286. https://doi.org/10.
1109/TDSC.2013.5

[24] Fabien Hermenier, Xavier Lorca, Jean-Marc Menaud, Gilles Muller, and Julia
Lawall. 2009. Entropy: a consolidation manager for clusters. In Proceedings of
the 2009 ACM SIGPLAN/SIGOPS international conference on Virtual execution
environments. ACM, 41–50.

[25] Michael R. Hines, Umesh Deshpande, and Kartik Gopalan. 2009. Post-copy Live
Migration of Virtual Machines. SIGOPS Oper. Syst. Rev. 43, 3 (July 2009), 14–26.
https://doi.org/10.1145/1618525.1618528

[26] T. Hirofuchi, A. Lebre, and L. Pouilloux. 2018. SimGrid VM: Virtual Machine
Support for a Simulation Framework of Distributed Systems. IEEE Transactions
on Cloud Computing 6, 1 (Jan 2018), 221–234. https://doi.org/10.1109/TCC.2015.
2481422

[27] Michael Isard, Vijayan Prabhakaran, Jon Currey, Udi Wieder, Kunal Talwar, and
Andrew Goldberg. 2009. Quincy: Fair Scheduling for Distributed Computing
Clusters. In Proceedings of the ACM SIGOPS 22nd Symposium on Operating Systems
Principles. ACM, New York, NY, USA, 261–276. https://doi.org/10.1145/1629575.
1629601

[28] Changyeon Jo, Youngsu Cho, and Bernhard Egger. 2017. A Machine Learning
Approach to Live Migration Modeling. In Proceedings of the 2017 Symposium on
Cloud Computing. ACM, New York, NY, USA, 351–364. https://doi.org/10.1145/
3127479.3129262

[29] Avi Kivity, Yaniv Kamay, Dor Laor, Uri Lublin, and Anthony Liguori. 2007. KVM:
the Linux virtual machine monitor. In Ottawa Linux Symposium. 225–230.

[30] Joseph J. LaViola. 2003. Double Exponential Smoothing: An Alternative to
Kalman Filter-based Predictive Tracking. In Proceedings of theWorkshop on Virtual
Environments 2003. ACM, New York, NY, USA, 199–206. https://doi.org/10.1145/
769953.769976

[31] Zitao Liu and Sangyeun Cho. 2012. Characterizing Machines and Workloads
on a Google Cluster. In Proceedings of the 2012 41st International Conference on
Parallel Processing Workshops. IEEE Computer Society, Washington, DC, USA,
397–403. https://doi.org/10.1109/ICPPW.2012.57

[32] Asit K. Mishra, Joseph L. Hellerstein, Walfredo Cirne, and Chita R. Das. 2010. To-
wards Characterizing Cloud Backend Workloads: Insights from Google Compute
Clusters. SIGMETRICS Performance Evaluation Review 37, 4 (March 2010), 34–41.
https://doi.org/10.1145/1773394.1773400

[33] Ripal Nathuji, Aman Kansal, and Alireza Ghaffarkhah. 2010. Q-clouds: Managing
Performance Interference Effects for QoS-aware Clouds. In Proceedings of the 5th
European Conference on Computer Systems. ACM, New York, NY, USA, 237–250.
https://doi.org/10.1145/1755913.1755938

[34] Kay Ousterhout, Patrick Wendell, Matei Zaharia, and Ion Stoica. 2013. Sparrow:
Distributed, Low Latency Scheduling. In Proceedings of the Twenty-Fourth ACM
Symposium on Operating Systems Principles. ACM, New York, NY, USA, 69–84.
https://doi.org/10.1145/2517349.2522716

[35] Pradeep Padala, Kai-Yuan Hou, Kang G Shin, Xiaoyun Zhu, Mustafa Uysal, Zhikui
Wang, Sharad Singhal, and Arif Merchant. 2009. Automated control of multiple
virtualized resources. In Proceedings of the 4th ACM European conference on
Computer systems. ACM, 13–26.

[36] Nohhyun Park, Irfan Ahmad, and David J. Lilja. 2012. Romano: Autonomous
Storage Management Using Performance Prediction in Multi-tenant Datacenters.
In Proceedings of the Third ACM Symposium on Cloud Computing. ACM, New
York, NY, USA, Article 21, 14 pages. https://doi.org/10.1145/2391229.2391250

[37] Rightscale. 2019. RightScale 2019 State of the Cloud Report.
[38] Francesca Rossi, Peter van Beek, and Toby Walsh (Eds.). 2006. Handbook of

Constraint Programming. Elsevier Science Inc., New York, NY, USA.
[39] Paul Shaw. 2004. A Constraint for Bin Packing. In Proceedings of the 10th Interna-

tional Conference on Principles and Practice of Constraint Programming. Springer-
Verlag, Berlin, Heidelberg, 648–662. https://doi.org/10.1007/978-3-540-30201-
8_47

[40] B. Shen, R. Sundaram, A. Russell, S. Aiyar, K. Gupta, A. Nagpal, A. Ramesh,
and H. Shukla. 2017. High Availability for VM Placement and a Stochastic
Model for Multiple Knapsack. In 2017 26th International Conference on Computer
Communication and Networks (ICCCN). 1–9. https://doi.org/10.1109/ICCCN.2017.
8038384

[41] Aameek Singh, Madhukar Korupolu, and Dushmanta Mohapatra. 2008. Server-
storage virtualization: integration and load balancing in data centers. In Proceed-
ings of the 2008 ACM/IEEE conference on Supercomputing. IEEE Press, 53.

[42] Alexey Tumanov, Timothy Zhu, Jun Woo Park, Michael A. Kozuch, Mor Harchol-
Balter, and Gregory R. Ganger. 2016. TetriSched: Global Rescheduling with
Adaptive Plan-ahead in Dynamic Heterogeneous Clusters. In Proceedings of the
Eleventh European Conference on Computer Systems. ACM, New York, NY, USA,
Article 35, 16 pages. https://doi.org/10.1145/2901318.2901355

[43] Akshat Verma, Puneet Ahuja, and Anindya Neogi. 2008. pMapper: power and
migration cost aware application placement in virtualized systems. In Proceedings
of the 9th ACM/IFIP/USENIX International Conference on Middleware. Springer-
Verlag New York, Inc., 243–264.

[44] Akshat Verma, Juhi Bagrodia, and Vimmi Jaiswal. 2014. Virtual Machine Consoli-
dation in the Wild. In Proceedings of the 15th International Middleware Conference.
ACM, New York, NY, USA, 313–324. https://doi.org/10.1145/2663165.2663316

[45] Abhishek Verma, Luis Pedrosa, Madhukar Korupolu, David Oppenheimer, Eric
Tune, and John Wilkes. 2015. Large-scale Cluster Management at Google with
Borg. In Proceedings of the Tenth European Conference on Computer Systems. ACM,
NewYork, NY, USA, Article 18, 17 pages. https://doi.org/10.1145/2741948.2741964

[46] VMWare. 2018. VMWare vSAN 6.6 Technical Overview.
[47] Hui Wang, Canturk Isci, Lavanya Subramanian, Jongmoo Choi, Depei Qian, and

Onur Mutlu. 2015. A-DRM: Architecture-aware distributed resource management
of virtualized clusters. ACM SIGPLAN Notices 50, 7 (2015), 93–106.

[48] Timothy Wood, Prashant Shenoy, Arun Venkataramani, and Mazin Yousif. 2007.
Black-box and Gray-box Strategies for Virtual Machine Migration. In Proceedings
of the 4th USENIX Conference on Networked Systems Design & Implementation.
USENIX Association, Berkeley, CA, USA, 17–17. http://dl.acm.org/citation.cfm?
id=1973430.1973447

[49] Zhen Xiao, Weijia Song, and Qi Chen. 2013. Dynamic resource allocation using
virtual machines for cloud computing environment. IEEE Transactions on parallel
and distributed systems 24, 6 (2013), 1107–1117.

[50] Xiao Zhang, Eric Tune, Robert Hagmann, Rohit Jnagal, Vrigo Gokhale, and John
Wilkes. 2013. CPI2: CPU Performance Isolation for Shared Compute Clusters.
In Proceedings of the 8th ACM European Conference on Computer Systems. ACM,
New York, NY, USA, 379–391. https://doi.org/10.1145/2465351.2465388

