
Fabien Hermenier
Ludovic HenrioTRUSTABLE VM SCHEDULING

IN A CLOUD

Read more in the paper.
Check out BtrPlace website.

Contact: fabien.hermenier@nutanix.com

Debugging BtrPlace
CONSTRAINTSDEFECT CAUSE TESTS

Initial violation in continuous mode
Unexpected arguments
Discrete filtering in continuous mode
Unsupported action synchronisation
Bad action semantic comprehension
Unconsidered initial element state

7
4
3
4
1
1

704
642
45
20
16
4

CONSTRAINTSCONSEQUENCE TESTS

Under-filtering
Crashes
Over-filtering

10
3
6

938
459
244

SafePlace outperforms
BtrPlace assertion system

 The scheduler deploys VM to
servers according to SLOs which
state through constraints the
awaited performance, availability,
placement requirements, etc.
A scheduler that behaves as
expected leads to low running
costs and higher user confidence.

under-filtering lead to decisions that
violates constraints and reduce user
confidence.

over-filtering deny solutions and reduce
the hosting capacity.

crashes introduce delay and reduce user
confidence.

VM schedulers have defects

Causes & consequences

Peer review, unit & smoke testing do not
counteract reasoning issues.

Issue trackers report un-anticipated state
transitions or event ordering and partial
logic understanding.

Usability
BtrPlace constraints specified.
Suitable for OpenStack & VMWare DRS.

concise specifications

short test campaigns fast enough for direct testing

SAFEPLACE
DSL & fuzz testing

to report
inconsistencies

@CstrTest()
public void testMaxOnline(TestCampaign c) {
 // The constraint
 c.check("maxOnline”);

 // Fuzzer configuration
 c.vms(10).srcVMs(1, 9, 0).with("nb", 0, 7);

 // Scheduler configuration
 c.schedulerParams().doRepair(true);

 // Test configuration
 c.limits().tests(10000).failures(1);
}

Implementation checker
fuzzed test cases to avoid bias

simulator + spec as an oracle

implementation vs. oracle to
report inconsistencies

RunningCapacity(ns <: nodes, nb : int) ::=
 sum({card(running(n)). n : ns}) <= nb

MaxOnline(ns <: nodes, nb : int)::=
 card({i. i:ns , nodeState(i)=online}) <= nb

Among(vs <: vms, parts <<: nodes) ::=
 ?(g : parts)
 {host(i). i : vs, vmState(i) = running} <: g

ShareableResource(id : string) ::=
 !(n : nodes)
 sum([cons(v, id). v : host(n)]) <= capa(n, id)

Constraint specification
state acceptable (re)configurations

augmented first order logic

business functions in native code

temporal call to reason on the history

integration through code annotation

