
Bin Repacking Scheduling in Virtualized
Datacenters

Fabien Hermenier1, Sophie Demassey2, and Xavier Lorca2

1 University of Utah, School of Computing
fhermeni@cs.utah.edu,

2 TASC project, Mines Nantes-INRIA, LINA CNRS UMR 6241,
firstname.lastname@mines-nantes.fr

Abstract. A datacenter can be viewed as a dynamic bin packing sys-
tem where servers host applications with varying resource requirements
and varying relative placement constraints. When those needs are no
longer satisfied, the system has to be reconfigured. Virtualization allows
to distribute applications into Virtual Machines (VMs) to ease their ma-
nipulation. In particular, a VM can be freely migrated without disrupt-
ing its service, temporarily consuming resources both on its origin and
destination.
We introduce the Bin Repacking Scheduling Problem in this context.
This problem is to find a final packing and to schedule the transitions
from a given initial packing, accordingly to new resource and placement
requirements, while minimizing the average transition completion time.
Our CP-based approach is implemented into Entropy, an autonomous
VM manager which detects reconfiguration needs, generates and solves
the CP model, then applies the computed decision. CP provides the
awaited flexibility to handle heterogeneous placement constraints and
the ability to manage large datacenters with up to 2,000 servers and
10,000 VMs.

1 Introduction

A datacenter is a hosting platform of hundreds of interconnected servers. To
make this infrastructure costly effective, it should be able to host simultaneously
a large range of client applications. Virtualization eases the deployment of the
applications. An application is distributed into Virtual Machines (VMs) which
can be colocated on any servers, and dynamically manipulated under different
kinds of actions, including live migration between hosts.

The deployment of the applications is constrained by the finite capacity of
the servers in shared resources like CPU and memory. In addition, clients and
system administrators have specific expectations with regards to the relative
placement of the VMs on the servers. For instance, a client may require the
replicas of his application to be continuously hosted on distinct servers to ensure
fault tolerance, or an administrator may require to isolate a group of servers for
maintenance purpose.

A system configuration is an assignment of the VMs to the servers which
satisfies both the resource and placement requirements. Over time, the system
evolves: placement requirements vary, servers are intentionally or unexpectedly
halted or restarted, VMs are launched or killed and their resource requirements
change. When the current configuration is no longer viable, a new configura-
tion has to be computed, and the transition actions to apply to reach the new
configuration have to be planned to ensure their feasibility.

The reconfiguration problem is then made of a packing and a scheduling sub-
problems, both being subject to resource and placement constraints. The prob-
lem may have no solution, either because no feasible final configuration exists, or
because reaching such a configuration induces an unsolvable cycle of transitions.
Furthermore, a reconfiguration has an impact on the running applications. Thus
the objective is to get a reconfiguration plan with minimum average transition
completion time. Although this objective affects the scheduling part only, it is
also conditioned by the packing to reach.

The reconfiguration problem is clearly intractable in theory. In practice, the
automated VM manager of the datacenter needs to periodically solve online
large-sized instances. For scalability reasons, incomplete optimization is then
required and a tradeoff has to be made between the computation time of the
reconfiguration plan and its execution time. In a previous work [6] on a recon-
figuration problem without side constraints, we shown that despite a fast com-
putation time, a standard greedy algorithm tends to compute reconfiguration
plans with large execution durations. On the opposite, our solution, partially
based on CP, computed faster plans in an extra time that was drastically lesser
than the execution duration gain. In this paper, we follow this viewpoint: VM
managers would benefit from embedding smarter reconfiguration decision mo-
dules. By smarter, we mean able to compute high-quality decisions even if an
additional, still acceptable, solving time is required. We mean also flexible and
generic enough to handle the various user requirements, which are traditionally
not considered. For these reasons, we first adopt a centralized solution approach,
by contrast to cheaper distributed approaches which only apply local changes.
Although the problem induces a natural decomposition into two subproblems,
we solve them conjointly as they both contribute to get a reliable and fast re-
configuration plan. Finally, we rely on Constraint Programming to easily handle
the problem as a whole, including any combinations of user requirements.

In this paper, we first formalize the general reconfiguration problem and dis-
cuss its complexity (Section 2). We describe the specifications of the practical
problem of automated VM management and show how CP fulfills them (Sec-
tion 3). We then present the CP model, the search strategy, and the two reso-
lution modes we developed for this problem (Section 4). All these elements are
pre-implemented into the autonomous VM manager Entropy [6]. Experiments
on realistic workloads show that our implementation solves problems involving
10,000 VMs on 2,000 servers with 900 side constraints in less than 5 minutes
(Section 5). Last, we review the literature on process and data migration, and

show how our general model fits many of these related problems (Section 6).
Our conclusions and perspectives are provided in Section 7.

2 Core Problem Statement

Without side constraints, a configuration is a standard packing of items with ar-
bitrary heights (VMs) to multidimensional bins with arbitrary capacities (servers).
A reconfiguration plan is a schedule of the transition actions applied to the VMs,
subject to the same resource limitations. The specificity of this scheduling prob-
lem comes from the occupation of the resources by each VM: on its initial host
before and during the transition, and on its final host during and after the tran-
sition. The reconfiguration problem can be dissociated from the context of VM
management. To our knowledge, no such formalization has formerly been pro-
posed. Hereafter it is referred to as the Bin Repacking Scheduling Problem.

2.1 The Repacking and Scheduling Problem

Consider a 2-states (initial/final) dynamic system which consists of a set R of
p-dimensional bins with static capacities Br ∈ Np, for all r ∈ R, and a set J of
items with dynamic initial boj ∈ Np and final bfj ∈ Np heights, for all j ∈ J . The
initial state of the system is known and defined as an assignment so : J → R
satisfying

∑
j∈s−1

o (r)b
o
j ≤ Br for each bin r ∈ R.3 The system state changes by

applying a transition action to each item j ∈ J . The restricted set of allowed
transitions is given as a table∆j ⊆ T ×R, where each element δ = (τ, r) indicates
that a transition of type τ ∈ T can be applied to item j ∈ J to reassign it from
bin so(j) to bin r. With any transition δ ∈ ∆j are associated a duration dδ ∈ N
and a weight wδ ∈ N.

Definition 1. The Bin Repacking Scheduling Problem (BRSP) is to as-
sociate with each item j ∈ J , a transition δ(j) = (τ(j), sf (j)) ∈ ∆j and a time
tj ∈ N to start this transition, such that the bin capacities are satisfied at any
time ∑

j ∈ s−1
o (r)

t < tj + dδ(j)

boj +
∑

j ∈ s−1
f (r)

t ≥ tj

bfj ≤ Br, ∀r ∈ R,∀t ≥ 0, (1)

and the weighted sum of the completion times is minimized∑
j∈J

wδ(j)(tj + dδ(j)), (2)

or to prove that no such feasible packing or scheduling exists.

We deliberately present a first conceptual model as the notion of allowed transi-
tion action is context-dependent. In the context of VM management, we consider
3 s−1(r) ⊆ J denotes the preimage of {r} ⊂ R under function s from J to R.

3 groups of items: items j ∈ JS have to be suspended (boj > 0, bfj = 0), items
j ∈ JL have to be launched (boj = 0, bfj > 0), items j ∈ JA have to be let active
(boj > 0, bfj > 0). To each group corresponds one transition table:

∆j =

{(S, r) | r ∈ R} ∀j ∈ JS
{(L, r) | r ∈ R} ∀j ∈ JL
{(F, so(j))} ∪ {(M, r) | r ∈ R \ {so(j)}} ∀j ∈ JA.

The transition types T = {S,L,M,U} stand for Suspend, Launch, Migrate,
Unmoved, respectively. The duration and the weight of a transition are 0 if it
is of type U , and the duration is positive and the weight is 1 otherwise. Let
VM Repacking Scheduling Problem (VRSP) refer to this instance of the
BRSP. This model totally fits our application: VMs can be suspended (S) or
resumed (L), either on their current server or on another, incurring different
costs in these two cases. Running VMs can also either stay on their origin server
(U) or migrate live to another server (M). In the first case, the transition is
immediate (dU = 0), even if the VM resource requirements change, and it does
not alter the VM service (wU = 0). Finally, the action of turning a server off or
on can be modeled by introducing a dummy VM, respectively to be launched or
suspended, statically assigned to the server, and occupying its entire resources.

In the VRSP, the transition typecast is determined by the item j itself, its
origin so(j) and destination sf (j) bins. Hence, determining a set of transitions
δj comes to compute a Multidimensional Bin Packing. This problem is NP-
complete in the strong sense [5] even in the one-dimensional case (p = 1). In
turn, determining the times tj yields to a particular scheduling problem.

2.2 The Scheduling Subproblem

Definition 2. Given a final packing sf : J → R such that
∑
j∈s−1

f (r)b
f
j ≤ Br,

∀r ∈ R, and a transition δ(j) ∈ ∆j for each item j ∈ J , the Repacking
Transition Scheduling Problem (RTSP) is to schedule all the transitions
such that the resource constraints (1) are satisfied and the weighted sum of the
completion times (2) is minimized, or to prove that no such schedule exists.

This can be viewed as a Resource Constrained Scheduling Problem [5]
with no-wait, variable durations and consumer/producer tasks : to each item
j ∈ J correspond two operations, Oj occupying boj resource units on so(j) in
time interval [0, tj + dj) and Fj occupying b

f
j resource units on sf (j) in [tj , H̄),

where H̄ denotes any large enough scheduling horizon. A decision variant of this
problem, with unit durations dj = 1 and constant requirements boj = bfj , has
previously been studied by Sirdey et al. [8] and referred to as Zero-Impact
Process Move Program. It asks whether a total order exists over the set of
transitions. As durations are unit, this is equivalent to find a timed schedule.
In [8], this problem is proved to be NP-hard in the strong sense. We give below
a sketch of the proof.

Proposition 1. The decision variant of RTSP is NP-hard in the strong sense,
even with 2 one-dimensional bins, unit durations and constant requirements.

Proof. Consider an instance of 3-Partition [5], made of a bound W ∈ N
and a set A of 3m elements of sizes W/4 < wa < W/2 for all a ∈ A such
that

∑
a∈A wa = mW . This reduces to an instance of RTSP with two one-

dimensional bins R = {r1, r2} each of capacity mW and two sets of items: J1
composed of 3m items of height wj migrating from r1 to r2, and J2 composed of
k−1 items of height W and migrating from r2 to r1. Then finding a partition of
A in m sets, each of size W , is equivalent to find a migration plan transferring
a height W of resource, alternatively from r1 to r2 and from r2 to r1. ut

3 An Automated VM Manager Relying on CP

The VRSP models a reconfiguration problem centered on the resource require-
ments. In practice, a VM manager should also deal with user placement require-
ments. This section first presents, as a proof of concept, 4 typical placement
constraints. It then describes the concrete specifications of a VM manager and
why CP is suitable. It finally presents the VM manager Entropy that relies on
CP for modeling and solving, on-the-fly, instances of a specialized VRSP.

3.1 Side Placement Constraints

A side placement constraint restricts the assignment of given VMs to given
servers, or the relative assignments of sets of VMs. Some restrictions are required
by the system administrators for management purposes; others are required by
the clients for the good execution of their applications. The 4 examples below
are representative of concrete standard requirements.

Ban. To perform a hardware or a software maintenance on a server, a system
administrator has first to migrate the hosted VMs to other servers. More gene-
rally, administrators and clients may want to disallow a given set of VMs to be
hosted by a given set of servers. We refer to this constraint as ban.

Spread. Highly-available applications use replication to achieve tolerance to
hardware failures. To be fully effective, the VMs running the replicas must, at any
time, be hosted on distinct servers. We refer to this constraint as spread. Figure 1
depicts an instance of VRSP with two VMs subject to a spread constraint. As its
resource requirements increase, VM1 has to migrate to server N2. Spread enforces
to delay this action after the migration of VM2 to N3 is completed.

Lonely. Using a denial-of-service, a VM may over-use the CPU and memory
resources of its host and then impact the colocated VMs or crash the host. A
solution is to make critical application VMs to be hosted on servers on their
own. Typically, a system administrator separates the service VMs that manage
the datacenter from the client VMs. We refer to this constraint as lonely.

Fig. 1: spread enforces VM1 and VM2 to always be hosted on distinct servers.

Capacity. A system administrator controls how shared resources are distributed
among the VMs. For instance, each VM reachable from outside the datacenter
requires a public IP address. As the pool of public IPs is limited, the number of
simultaneous running VMs is restricted to the size of this pool. We refer to as
capacity the constraint that limits the maximum number of VMs colocated on
a given set of servers.

3.2 Constraint Programming for VM management

The Autonomous VMManager of a datacenter relies on a periodic or event-
driven control loop composed of four modules: monitoring retrieves the current
system configuration, provisioning predicts the future requirements, plan com-
putes the reconfiguration plan, and execution performs the physical reconfigu-
ration. The plan module gathers the informations of the monitoring and provi-
sioning modules, adapts the solution algorithm, and runs it. The specifications
for an efficient plan module are as follows. First, the algorithm should scale
up to the size of the datacenter. Second, as the applications run in degraded
mode until the configuration becomes viable, computing a solution should be
fast and the reconfiguration durations of the applications should be short. Third
the algorithm does not need to ensure optimality, but it is strongly required to
be flexible. Indeed, it must be dynamically adaptable to handle different types
of side constraints and to deal with any combinations of them. Last, virtuali-
zed datacenters exist for a short while, but they spread rapidly and new needs
emerge with new usages. As a consequence, a VM manager should be extensible
to take into consideration future needs.

Constraint Programming is known as a suitable solution for packing and
scheduling problems. We claim that CP actually offers unique capabilities to
deal with the practical reconfiguration problem considered here. First, modeling
with global constraints eases the specification of new side placement constraints.
Second, the propagation engine ensures the automatic composability needed to
handle the packing and scheduling problems together with extra placement cons-
traints. Finally, the framework of tree search can easily be specialized in most CP
solvers with pre-implemented or ad-hoc variable and value ordering heuristics.
Such framework is thus convenient to quickly develop and test complete or local
search strategies. The search strategy matches the optimization objective, while
the CP propagation engine enforces the feasibility part of the problem.

The statement of the lonely constraint illustrates well the flexibility of our
approach. This constraint was specified after Amazon EC2 described this new

feature in march 2011.4 Its whole implementation in Entropy, from the selection
of the appropriate global constraint to the tests, has taken only 3 hours, and its
model, relying on a global constraint already available in the CP solver Choco
(see next Section), is about 50 lines of code. We did not have to modify our
heuristics to take this new constraint into account. The same holds true for the
3 other placement constraints described above. Obviously, the expressivity and
flexibility of CP have their limits, yet we have not reached them in our current
application.

Entropy is an open-source autonomous VM manager.5 The specificity of En-
tropy lies in its plan module based on the CP Solver Choco6 and in its confi-
guration script language for its specialization. The scripts allow administrators
and clients to each describe a datacenter and an application, respectively, while
focusing on their primary concerns: the administrator manages its servers with-
out any knowledge of the hosted applications, while a client specifies its place-
ment requirements without knowledge of the infrastructure or the other hosted
applications. Listing 2a illustrates the description of a 3-tiers highly-available
application. A tier ($T1, $T2, or $T3) is composed of several VMs, each running
a replica of a same service. For fault tolerance, a spread constraint enforces all
the VMs of each tier to be placed on distinct servers. To improve the application
isolation, a lonely constraint enforces all the VMs to be placed on servers on
their own. Listing 2b illustrates administrator needs. It describes a datacenter
made of 3 racks ($R1, $R2, $R3) of 50 servers each. A maximum of 100 hosted
VMs per rack is enforced by 3 capacity constraints. Last, all VMs are disallowed
to be placed on server N101 in order to prepare a maintenance.

1 $T1 = VM [1..5];
2 $T2 = VM [6..15];
3 $T3 = {VM17 , VM21 , VM22};
4 for $t in $T [1..3] {
5 spread($t);
6 }
7 lonely($T1 + $T2 + $T3);

(a) Description of a 3-tiers HA application.

1 $R1=N[1..50];
2 $R2=N[51..100];
3 $R3=N[101..150];
4 for $r in $R [1..3] {
5 capacity($r , 100);
6 }
7 ban($ALL_VMS , N101);

(b) Description of a datacenter.

Fig. 2: Sample configuration scripts provided by clients or administrators.

Given the current configuration retrieved by the monitoring module and the
future resource requirements estimated by the provisioning module, the plan
module first generates a Choco model of the corresponding VRSP instance.
The configuration scripts are then interpreted and the placement constraints are
added in turn to the model. If the current configuration is consistent with this
model, then Entropy restarts the control loop. Otherwise, the model is optimized
4 https://aws.amazon.com/dedicated-instances/
5 http://entropy.gforge.inria.fr
6 http://choco.emn.fr

for a limited time and the best solution found, if exists, is sent to the execution
module in charge to apply the reconfiguration plan.

4 Elements of Solution

This section presents the CP model including the four examples of placement
constraints, the search strategy dedicated to incomplete optimization and the
two modes of resolution currently implemented in Entropy. The model relies on
several standard constraints mentioned in the Global Constraint Catalog [2];
details on these constraints can be found in this reference.

4.1 Modeling the Core Problem

The end of the schedule is the first time the final configuration is reached. In our
model, it is represented by a domain variable H, defined on the integer interval
[0, H̄], H̄ being the given horizon. In order to properly represent a schedule, we
first introduce the notion of task variable:

Definition 3. A task variable is a compound object made of integer variables
T = 〈T s, T e, T r, T b1, T b2, . . . , T bp〉 denoting respectively: T s and T e the starting
and the ending times of the task, T r the resource the task is assigned to, and
T b1, . . . , T bp the heights of the task in the p dimensions.

Producer/consumer tasks. Each VM j ∈ J is modeled by two multidimen-
sional task variables representing the occupation of the initial server (Oj) and of
the final server (Fj). Such a representation is a variant of the producer-consumer
model [7] with no negative stock: Oj produces resources at the transition com-
pletion time, while Fj consumes resources from the transition start time. The
two task variables associated with each VM j ∈ J are formally defined by:

– Oj = 〈0, Oej , so(j), bo1j , . . . , b
op
j 〉 where only Oej is a variable defined on [0, H̄].

It means j occupies heights boj on initial server so(j) from time 0 to Oej .
– Fj = 〈F sj , H, F rj , b

f1
j , . . . , b

fp
j 〉, where F sj is a variable defined on [0, H̄], and

F rj is a discrete variable defined on R. It means j occupies heights bfj on
final server F rj from time F sJ to the end of the schedule H.

Transition types and no-wait. The tasks associated with a VM j ∈ J are
subject to a precedence relation with no-wait, Oej −F sj = dδ(j), which depends on
the applied transition action δ(j). In order to model transition δ(j), we consider a
variableXj defined on T denoting the transition type, and a variableWj , defined
on N denoting the transition weight. Then, the different variables associated with
a VM can be related by one table constraint:

(Xj , F
r
j , O

e
j − F sj ,Wj) ∈ {(τ, r, dδ, wδ) | δ = (τ, r) ∈ ∆j}, ∀j ∈ J .

Resource constraints. The resource constraints can be modeled on each di-
mension by one cumulatives constraint as follows:

cumulatives(〈Oj , Fj | j ∈ J 〉, R, ≤, k), ∀k ∈ {1, . . . , p}.

This signature is slightly different from the original one, as it specifies the dimen-
sion k to constrain. The filtering of cumulatives runs in O(|R|.|J |2). Actually,
as this constraint was not available in Choco, we developed our own version spe-
cialized to producer/consumer tasks, running with the same time complexity.

Redundant constraints. A transition typed as Unmoved has no duration
and no cost. It can then be scheduled at any time freeing maximum resources.
Formally, for each solution of VRSP, there exists a solution of equal or least
cost where an Unmoved transition is scheduled at time 0, if the VM requirements
decrease, or at time H, if they increase. The property remains true when adding
any side placement constraints, as those considered VMs keep precisely the same
placement. The property only applies to VMs which requirements vary uniformly
in all dimensions, which is usually the case in practice.

Xj = U ⇒ Oej = F sj = 0, ∀j ∈ JA | boj ≥ b
f
j ,

Xj = U ⇒ Oej = F sj = H, ∀j ∈ JA | boj < bfj .

4.2 Modeling the Side Constraints

Ban. The model of ban is straightforward as it relies on a simple domain reduc-
tion of the final assignment variables. For any subset of VMs J ⊆ J , and any
subset of servers R ⊆ R, constraint ban(J,R) is modeled by:

F rj 6= r, ∀j ∈ J, ∀r ∈ R.

Spread. Despite appearances, the model of spread cannot rely on disjunctives
constraints as the specified VMs are possibly hosted by a same server in the initial
configuration. An alternative is to ensure that the VMs are on distinct servers
in the final configuration; then, on each server, to ensure that the arrival of a
VM is delayed after all other involved VMs left. For any subset of VMs J ⊆ J ,
constraint spread(J) is modeled by:{

allDifferent(〈F rj | j ∈ J〉),
F ri = so(j) ⇒ Oei ≤ F sj , ∀i, j ∈ J, i 6= j.

Lonely. The model of lonely relies on one disjoint constraint enforcing the set
of servers hosting the specified VMs to be disjoint from the set of servers hosting
the remaining VMs. For any subset of VMs J ⊆ J , lonely(J) is modeled by:

disjoint(〈F rj | j ∈ J〉, 〈F rj | j 6∈ J〉).

Capacity. The model of capacity relies on a redundant set model for the VRSP.
A set variable, associated with each server, indicates the hosted VMs. The con-
straint bounds the sum of the set cardinalities over the specified servers. For any
subset of servers R ⊆ R and value n ∈ N, capacity(R,n) is modeled by:

∑
r∈R card(Vr) ≤ n,

j ∈ Vr ⇐⇒ F rj = r, ∀r ∈ R, ∀j ∈ J ,
Vr ⊆ J , ∀r ∈ R.

4.3 Solving the VRSP

Dedicated Search Strategy. Entropy solves the CP model using a time-
truncated branch-and-bound. The search strategy is conceived to descend quickly
towards a local optimum, by following the natural decomposition of the problem.
First, it focuses on the final packing and instantiates the assignment variables
〈F rj 〉j∈J . Starting with the VMs whose placement in the initial configuration
violates a resource or a placement constraint, the heuristic selects the VMs in
order of decreasing memory requirements and attempts at placing them to their
initial host first, then to another server selected in a worst-fit fashion. Once the
final packing is instantiated, the tasks 〈Fj〉j∈J are started as early as possible,
in turn, starting from the tasks which are entering a server with no leaving
transition.

A Repair Approach. We experimented two modes of resolution: either start-
ing from scratch or from a partial solution. In the rebuild mode, all VMs are
allowed to migrate, contrary to the repair mode where some candidates are a
priori fixed to their current location. The repair mode may drastically reduce
the size of the model – and then speed and scale up the solution process – if
a maximum number of candidates is fixed. On the other hand, the pre-packing
should be loose enough to ensure a solution to exist. The issue here is to build
a feasible and reasonable-sized partial solution. For this, we compute the inter-
section of the candidate sets returned by simple heuristics that come with each
resource and side constraint.

5 Evaluation

In this section, we evaluate the solving abilities of Entropy on realistic workloads.
The critical parameters we evaluate are the consolidation ratio, the size of the
datacenter, and the side constraints.

For these experiments, we simulate a datacenter composed of racks with 50
servers each. Each server provides 80 GB RAM and 150 uCPU (an abstract
unit to establish the computing capacity of a server). This infrastructure hosts
3-tiers applications, each composed of 20 VMs. The VMs are sized according

to the standards defined by Amazon EC27. The first and the second tiers are
composed of 5 and 10 VMs, respectively. Each VM uses 7.5 GB RAM and at most
4 uCPU (large instances in the EC2 terminology). The third tier is composed of
5 VMs, each using 17.1 GB RAM and at most 6.5 uCPU (high-memory extra-
large instances). The initial configuration is generated randomly. To simulate
a load spike, the uCPU demand is asked to grow for half the applications. To
simulate transitions, 4% of the VMs have to be launched or resumed, 2% of the
running VMs will be stopped or suspended, and 1% of the servers are being
taken off-line. The estimated duration of each transition is: 1 second to launch
a VM, 2 seconds to stop a VM, 4 to suspend, 5 to resume on the current server
and 6 on another one. Finally, the migration of a VM lasts 1 second per gigabyte
of RAM. For each instance, 10 minutes have been given to the plan module to
compute one first solution on an Intel Xeon E5520 at 2.27 GHz running Linux
2.6.26-2-amd64 and Sun JVM 1.6u21 with 8 GB RAM allocated to the heap.

The tables hereafter display the average computational results by sets of
100 instances each: solved is the number of solved instances (failures are due
to timeout), obj the average sum of the completion times in seconds, nodes the
average number of nodes open in the search tree, fails the average number of
fails, time the average solution time in seconds.

The consolidation ratio is the average number of VMs hosted per server. For
this experiment, we simulated 5 ratio values by fixing the number of servers to
1,000 and varying the number of VMs from 2,000 to 6,000.

Table 1: Impact of the consolidation ratio on the solving process.
Ratio Rebuild Mode Repair Mode

solved obj nodes fails time solved obj nodes fails time
2:1 100 452 2034 352 42.2 100 381 163 0 3.5
3:1 94 1264 3119 3645 75.2 100 749 394 0 8.4
4:1 65 3213 4574 11476 129.3 100 1349 836 0 18.7
5:1 10 7475 6878 47590 241.2 100 2312 1585 44 37.7
6:1 0 - - - - 86 4092 2884 2863 71.5

Table 1 shows the impact of the consolidation ratio on the solving process in
rebuild and repair modes. Increasing the consolidation ratio naturally makes the
problem harder: the number of VMs to place rises up, making the packing tighter.
The cost of the computed reconfiguration plan also grows as the migrations on
the overloaded servers have to be more precisely orchestrated. The repair mode
outperforms significantly the rebuild mode as it tackles, for a same ratio value,
much smaller models. The results show that our policy for fixing VMs a priori in
the repair mode is correctly balanced as it reduces well the model size without
making the problem unsolvable, even for a consolidation ratio of 5:1. Such a
ratio implies an average CPU demand of 72% of the datacenter capacity. This

7 http://aws.amazon.com/ec2

utilization rate is considered as ideal by system administrators as it provides an
efficient tradeoff between a high resource usage and the ability to absorb the
temporary load spikes.

The datacenter size. For this experiment, we generated 4 sets of instances
using a fixed consolidation ratio of 5:1 and a variable datacenter size, from 500
servers and 2,500 VMs to 2,000 servers and 10,000 VMs.

Table 2: Impact of the datacenter size on the solving process (repair mode).
Set #servers #VMs solved obj nodes fails time
x1 500 2,500 100 1160 805 13 7.0
x2 1,000 5,000 99 2321 1594 17 36.2
x3 1,500 7,500 99 3476 2374 43 105.5
x4 2,000 10,000 100 4635 3171 15 217.0

Table 2 shows the impact of the datacenter size on the computation in repair
mode. We observe that the solving time grows non-linearly with the datacenter
size, accordingly to the temporal complexity of the VRSP. The solver is however
able to compute at least one solution for almost all the instances. Finally, the
slow objective value growth and the few number of fails indicate the reliability
of our search heuristics to guide the solver to solutions of high quality. These re-
sults show the ability of Entropy to handle large representative datacenter sizes.
Indeed, the current trend in datacenter architecture consists in acquiring servers
per shipping container. Each container is almost autonomous and contains be-
tween 500 and 2,500 servers8. While it is possible to aggregate several containers,
i.e. several physical partitions, in one logical partition, the technical limitations
of the platform software may prevent migrations between them. Entropy is then
dimensioned to manage each partition individually.

The side constraints are now experimented in the context of Highly Avail-
able applications. For this experiment, one spread constraint is specified for
each application tier to provide fault tolerance. One application asks for dedi-
cated servers using a lonely constraint. Using capacity constraints, the hosted
capacity of each rack is limited to 300 VMs. Maintenance are prepared using
ban constraints on 0.5% of the running servers.

Table 3 shows the impact of the side constraints on the instances with a
variable consolidation ratio (left) and with a variable datacenter size (right).
For the highest consolidation ratio, the solver becomes unable to compute a
solution. The packing is already tight and hard to solve, and the additional side
constraints only exacerbate the situation. For lower ratios, the impact of the side
constraints on the solving time and on the solution cost is quite acceptable. Until
ratio 4:1, the difference is not significant. With ratio 5:1, the solver takes only
15 additional seconds to compute a solution subject to 750 spread constraints,
8 http://www.datacentermap.com/blog/datacenter-container-55.html

Table 3: Impact of the side constraints on the solving process (repair mode).
variable consolidation ratios variable datacenter sizes

Set solved obj nodes fails time Set solved obj nodes fails time
2:1 100 381 163 0 3.7 x1 97 1255 1156 3518 12.2
3:1 100 751 394 0 9 x2 93 2511 1872 3018 47.1
4:1 100 1376 841 31 19.2 x3 88 3778 2477 1670 120.2
5:1 95 2491 2007 7053 53.2 x4 91 4980 3271 957 238.7
6:1 35 4512 3603 9661 110.1

20 capacity constraints, 5 ban constraints, and one lonely constraint, while the
cost of the reconfiguration plan is increased by 13%. When the datacenter size
varies, the impact of the side constraints appears again to be limited. With fixed
ratio 5:1, the solver is always able to compute a solution for more than 88% of
the instances. For the largest problems, the solving time is only 9% greater than
for the core VRSP, while the cost of the solutions is only 7% higher.

These experiments show that the impact of the side constraints is significant
only when the core VRSP is itself already hard. In a well-designed datacenter,
the primary bottleneck is the limited capacity of its servers. The side placement
constraints should remain only tools provided to the administrators and clients to
express their preferences. When they become preponderant, then the dimension
of the datacenter should be rethought.

6 Related Works

Dynamic reconfiguration arises in real-time computing systems with two domi-
nant applications: reallocation of storage devices to data and reallocation of
processors to processes. In both cases, the goal is to improve the efficiency of the
service as the system evolves, but the main concerns differ.

One key issue in data migration is when to schedule, given a final configu-
ration and the limited capacity of the network, the transfer of data blocks to
involve the least impact on the service. In the core problem, the reconfiguration
time should be minimized, and each transfer occupies, simultaneously during
one unit time, the unique ports of its sender and receiver devices. Such a port
constraint is similar to the concurrent resource constraint of the RTSP. It is
however simpler since it is a disjunctive resource constraint, uncorrelated with
the storage capacity of the devices which is usually assumed to be unlimited dur-
ing migration. In the Data Migration with Space Constraints [1] variant,
both port and storage constraints have to be satisfied during the reconfiguration,
but data blocks are assumed to be identical and the devices never full.

The key issue in process migration is rather where to redispatch the processes,
given the limited capacities of the processors. Most former works, actually, only
consider migrations by service disruption and thus are not subject to scheduling
problems. CP-based approaches were proposed for two opposite objectives: Load
Rebalancing [4] aims at finding a more balanced configuration while minimi-
zing the number of migrations; Service Consolidation [3,6] aims at gathering
the load in order to switch off the maximum number of unused processors.

Live process migration induces a scheduling problem with concurrent re-
source requirements during the reconfiguration. To our knowledge, this problem
has previously only been studied in [6,8]. Sirdey et al. [8] presented the Pro-
cess Move Program, a variant of the RTSP oriented to load balancing, with
two transition types: unit-time live migration and migration by disruption. The
resource requirements are constant and the final configuration is given. The prob-
lem is to minimize the number of disruptions and to order the live migrations of
the remaining processes for solving the resource conflicts. The ZIPMP problem,
evoked in Section 2, is the decision variant where no disruption is allowed. The
authors provided a branch-and-bound and several metaheuristics solutions. In a
previous implementation of Entropy oriented to consolidation [6], a fast schedule
is searched in a greedy way, using a CP model to enforce the resource constraints
to be satisfied at any time. The considered problem is an extension of the RTSP
as it allows to migrate VMs on bypass servers to avoid cycles.

It turns out that, in former works, the packing and the scheduling parts of the
reconfiguration problem have never been handled at once. Such a decomposition
allows to deal with a quality criterion on the final configuration, namely load
balancing or consolidation, but it hinders the objective to get fast reconfiguration
plans. In the VRSP, consolidation and load balancing criteria could also be
enforced as extra soft constraints or within the search heuristic.

The aforementioned reconfiguration problems match the exact resource con-
straints (1) of the BRSP, or a natural extension of them:∑

j∈s−1
o (r)

t<tj

boj +
∑

j∈s−1
o (r)

tj≤ t<tj+dδ(j)

boδ(j) +
∑

j∈s−1
f (r)

tj≤ t<tj+dδ(j)

bfδ(j) +
∑

j∈s−1
f (r)

tj+dδ(j)≤ t

bfj ≤ Br, ∀r ∈ R,∀t ≥ 0.

This extension allows the requirements to differ as the transitions are performed.
Thus it allows to model disruptions (boδ(j) = bfδ(j) = 0) as in Process Move

Program or port constraints (boδ(j) = bfδ(j) = 1 and boj = bfj = 0) as in Data
Migration. Furthermore our CP model can be extended to handle these con-
straints, using 4 task variables for each transition instead of 2. As a consequence,
this model, with different objectives, fits most of the problems above described,
at one notable exception: it cannot deal with bypass as in [1,6].

Regarding now the flexibility and the scalability of our approach, a dozen of
relative placement constraints are currently implemented in Entropy. In the same
context of datacenter resource management, Dhyani et al. [3] also advocated the
power of CP technologies to handle some of these constraints. As previously
said, they perform only consolidation, not reconfiguration, and experiment on
instances with up to 30 servers with 4 resources each, and 250 VMs. Commercial
VM managers propose also more and more services to their clients to express
their needs in terms of placement. For example, the DRS [9] manager by VMWare
performs consolidation and provides 3 affinity rules to customize the VM place-
ment. These rules match the constraints, called in Entropy: spread, ban and its
opposite, fence. A cluster managed by DRS can not exceed 32 nodes and 1280
VMs. The technology behind DRS is concealed.

7 Conclusion

Virtualized datacenters host and manage large ranges of applications, each appli-
cation being distributed in VMs. The resource requirements of the VMs change
over time. In addition, clients and system administrators have specific expec-
tations regarding the relative placement of the VMs on the servers. Automatic
reconfiguration is needed each time the current placement is no longer viable.
Considering both the resource requirements and the placement constraints, the
problem is to determine a new placement of the VMs and to schedule the tran-
sitions so as to provide a fast and reliable reconfiguration.

In this paper, we presented a general formalization of this problem, called
Bin Repacking Scheduling Problem, and a model of Constraint Programming
providing the flexibility needed to dynamically inject side placement constraints.
Our model is implemented and integrated into the autonomous VM manager
Entropy. Experiments with realistic simulated workloads show the ability of
Entropy to solve problems involving up to 10,000 VMs on 2,000 servers with 900
side constraints in less than 5 minutes.

In future works, we want to enrich Entropy with more placement constraints,
including constraints on the network topology, which could make our model dras-
tically harder to solve. We aim also at providing side constraints with violation
penalties, as clients prefer a controlled degradation of the service to any non-
viable configurations. In addition, we want Entropy to be able to help a system
administrator to locate issues, such as resource bottleneck CP provides, through
soft constraints and explanations, the elements to address these needs. Their
development will contribute to improve the usability of datacenters.

References

1. Anderson, E., Hall, J., Hartline, J., Hobbes, M., Karlin, A., Saia, J., Swaminathan,
R., Wilkes, J.: Algorithms for data migration. Algorithmica 57(2), 349–380 (2010)

2. Beldiceanu, N., Carlsson, M., Rampon, J.: Global constraint catalog. Tech. Rep. 07,
SICS (2010), http://www.emn.fr/z-info/sdemasse/gccat/

3. Dhyani, K., Gualandi, S., Cremonesi, P.: A constraint programming approach for
the service consolidation problem. In: CPAIOR’10, LNCS, vol. 6140, pp. 97–101.
Springer (2010)

4. Fukunaga, A.: Search spaces for min-perturbation repair. In: CP’09. pp. 383–390.
Springer (2009)

5. Garey, M., Johnson, D.: Computers and Intractability: A Guide to the Theory of
NP-completeness. WH Freeman & Co. New York, NY, USA (1979)

6. Hermenier, F., Lorca, X., Menaud, J.M., Muller, G., Lawall, J.: Entropy: a consoli-
dation manager for clusters. In: VEE ’09. pp. 41–50. ACM (2009)

7. Simonis, H., Cornelissens, T.: Modelling producer/consumer constraints. In: CP’95.
LNCS, vol. 976, pp. 449–462. Springer (1995)

8. Sirdey, R., Carlier, J., Kerivin, H., Nace, D.: On a resource-constrained scheduling
problem with application to distributed systems reconfiguration. European Journal
of Operational Research 183(2), 546–563 (2007)

9. VMWare: Resource Management with VMWare DRS. Tech. rep. (2006)

