Bin Repacking Scheduling in Virtualized Datacenters
- Back to Work -

Fabien Hermenier,
OASIS Team, INRIA - CNRS - I3S, Univ. Nice Sophia-Antipolis,

fabien.hermenier@inria.fr

Sophie Demassey,
TASC project, Mines Nantes-INRIA, LINA CNRS UMR 6241,

sophie.demassey@mines-nantes.fr

Xavier Lorca,
TASC project, Mines Nantes-INRIA, LINA CNRS UMR 6241,

xavier.lorca@mines-nantes.fr

September 26, 2011

Because the acceptation of a paper does not necessarily means that its objectives were achieved, we made
some progress in the model and the implementation of the VRSP since the acceptation of Bin Repacking
Scheduling in Virtualized Datacenters [3] in June 2011. In this report, we present our modifications and the
new results using the same evaluation protocol.

1 Modifications

Profiling and testing our code in various situations revealed a few flaws which reduced the performance of
the solving process and the quality of the computed reconfiguration plans. In this section, we describe the
modifications that were made.

In the VRSP. The implementation of the bin-packing constraint in Choco partially relies on set vari-
ables. The constraint has been reimplemented to directly maintain the candidate items for a bin as internal
data, using bitsets, instead of using the external set abstraction. This reduces the propagation time of the
constraint by a significant order of magnitude.

In the side constraints. Profiling the solving process of instances having numerous side constraints shown
bottlenecks in lonely and capacity that were responsible of a high computation time.

The implementation of lonely has been modified to substitute the set-based disjoint constraint by an
equivalent that directly manage two lists of integer variables. As a result, the set variables and the channeling
constraints to link the sets with the integer variables have been removed.

The capacity constraint has been remodeled to also avoid the use of set variables to store the number of
VMs running on servers. capacity is now modeled with one among [1] constraint that directly counts the
VMs assigned to any server in the designated group of servers. For any subset of servers R C R and value
n € N, n > 0, capacity(R,n) is modeled by:

among([0, 7], (FJ | j € 7). R).

where variable F] models the final server assigned to VM j € J. In the specific case n = 0, constraint

capacity(R,n) is instead directly modeled using domain constraints: F} ¢ R,Vj € J.

In the search heuristics. A bug was found in the search heuristic that prevented it to use a worst-fit
approach to place VMs on servers. Fixing this bug improves its efficiency to guide the solver to a solution
when the consolidation ratio was high. A second optimization was performed to reduce the scheduling delay
of the actions and the number of migrations of the reconfiguration plan. In the repair mode, the branching
heuristic now tries first to place VMs on servers that only host candidate VMs and VMs that will not be
suspended nor stopped. No resource will then be freed on these servers during the reconfiguration process so
any action that will place a VM on them is ensured to be scheduled without any delay. This also avoids the
creation of additional migrations to liberate resource on servers when too many VMs are temporary assigned
to them during the reconfiguration.

2 Evaluations

Our modifications reduce the running time of the solving process and improve the quality of the computed
solutions. For an accurate comparison of the gains with regards to the published results, we have rerun our
experiments using the same set of instances and the same computing servers in the Grid’5000 testbed [2].
Details about the instances and the experimental environment are available in the original paper [3].

2.1 Impact of the consolidation ratio

Ratio Rebuild Mode Repair Mode
solved obj nodes fails time solved obj nodes fails time
2:1 100 387 1972 0 2.3 100 380 162 0 0.3
3:1 100 766 2952 0 3.9 100 742 393 0 0.8
4:1 100 1393 3932 1 6.5 100 1309 830 0 1.5
5:1 100 2644 4921 9 10.3 100 2117 1574 4 3.2
6:1 100 4873 5958 71 15.3 100 3271 2691 1 7.0

Table 1: Impact of the consolidation ratio on the solving process.

Table 1 shows the impact of the consolidation ratio on the solving process in the rebuild and repair modes
using the new implementation. Figure 1 shows the performance of our new implementation with regards to
the original one. Figure 1(a) shows the average solving time to compute the first solution. Figure 1(b) shows
the average cost of these solutions.

250 8000
- old-rebuild old-rebuild
§ 200 - new-rebuild 7000 |- new-rebuild
2 old-repair] 6000 [~ old-repair
-\g 150 new-repair S 5000 - new-repair
2 £ 4000
3 100 g 3000
o
(]

§ 50 2000
3 1000

0 T T T 0 T T T

21 3:1 41 5:1 6:1 2:1 31 4:1 5:1 6:1

Consolidation Ratio Consolidation Ratio

(a) Computation time for the first solution (b) Cost of the solution

Figure 1: Gains on the solving process for instances having a variable consolidation ratio

We first observe on Table 1 that all the instances are now solved. This is mostly explained by the bug
fix in the search heuristic. Figure 1(a) shows the gain from the optimization of the pack constraints. In the
rebuild mode, instances with a consolidation ratio of 5:1 are now computed in 17 seconds; 14 times faster.
In the repair mode, instances with a consolidation ratio of 6:1 are now computed in 7.6 seconds; 9.5 times
faster. This gain is slightly less important than the gain in the rebuild mode as the number of managed
VMs, so the number of items handled by the pack constraint, is reduced. Finally, Figure 1(b) shows the
improvements on the computed reconfiguration plans. This cost was reduced by a factor of 2.8 in the rebuild
mode and by a factor of 1.15 in the repair mode.

Our optimizations reduce the original gap between the rebuild and the repair mode for these instances.
The gain is however still appreciable as the repair mode still provides better solutions in a fewer amount of
time.

2.2 Impact of the datacenter size

Set #servers #VMs Rebuild Mode Repair Mode

solved obj nodes fails time solved obj nodes fails time
x1 500 2,500 100 1326 2457 0 2.0 100 1058 798 0 0.8
x2 1,000 5,000 100 2653 4914 0 10.3 100 2130 1578 0 3.3
x3 1,500 7,500 100 3950 7370 0 36.5 100 3179 2346 0 10.1
x4 2,000 10,000 100 5317 9828 0 88.9 100 4269 3143 0 21.9

Table 2: Impact of the datacenter size on the solving process.

Table 2 shows the impact of the datacenter size on the computation in the rebuild and the repair modes.
Contrary to the old implementation that failed at solving one instance for sets x2 and x3, we observe here
that every instances are now solved using the new implementation. The performance gap between the rebuild
mode and the repair mode is more visible in this experiment where instances are getting bigger.

Figure 2 shows the performance of our new implementation with regards to the original one. Figure 2(a)
shows the average solving time to compute the first solution while Figure 2(b) shows the average cost of
these solutions. We first observe that the gap between the old and the new implementation increases with
the size of the problems. The accelerator factor using the new implementation in the repair mode stays
however over 9. Figure 2(b) shows a constant 10% improvement on the quality of the computed solutions.

N
a
=}
3]
=3
s}
s}

D | o [— o
« o
£ 2 3500 -
£ 150 E 3000
2 2 2500 -
5 100 8 2000 -
= 8 1500 -
£ 50 1000 £
3 500
0 T T 0 T T
x1 x2 x3 x4 x1 x2 x3 x4
Datacenter size Datacenter size
(a) Computation time for the first solution (b) Cost of the solution

Figure 2: Gains on the solving process for variable datacenter sizes.

2.3 Impact of the side constraints

Table 3 shows the impact of the side constraints on the instances with a variable consolidation ratio (left)
and with a variable datacenter size (right) using the new implementation. Contrary to the previous imple-

variable consolidation ratios variable datacenter sizes

Set solved obj nodes fails time Set solved obj nodes fails time
2:1 100 381 163 0 0.4 x1 100 1059 798 0 0.9
3:1 100 742 393 0 0.9 x2 100 2131 1578 0 4.2
4:1 100 1310 830 0 1.9 x3 100 3179 2346 0 13.8
5:1 100 2117 1570 0 4.1 x4 100 4269 3143 0 30.7
6:1 100 3298 3172 0 10.4

Table 3: Impact of the side constraints on the solving process (repair mode).

mentation where the additional constraints forbade to solve some of the biggest instances, all the instances
can now be solved.

Figure 3 and Figure 4 shows the impact of the side constraints on the solving process for instances
having a variable consolidation ratio and a variable datacenter size, respectively. Similar to the previous
experiments, we observe that the optimizations performed on our model and our implementation improve
the performance by a significant order of magnitude.

N
N
o
o
[=3
Is3
s}

a old-repair,sides 4500 + old-repair,sides

$ 100 - new-repair,sides 4000 F new-repair,sides

@ [}

£ 80 2 3500 -

s > 3000

= 60 2 2500

g & 2000 -

> 40 g 1500 -

) 1000 -

[} -

3 500 |—
0 T T T 0 T T T
21 3:1 4:1 5:1 6:1 21 31 4:1 5:1 6:1

Consolidation Ratio Consolidation Ratio
(a) Solving duration (b) Cost of the solutions

Figure 3: Impact of the side constraints with variable consolidation ratios

250 5000

a old-repair,sides 4500 + old-repair,sides
§ 200 - new-repair,sides o, 4000 - new-repair,sides
£ 3 3500 [
< 2 3000 -
S 2 2500 -
S 8 2000 -
> & 1500 |
c
s 1000 F
3 500

0 T T 0 T T

x1 x2 x3 x4 x1 x2 x3 x4

Datacenter size Datacenter size
(a) Solving duration (b) Cost of the solutions

Figure 4: Impact of the side constraints with variable datacenter sizes

2.4 Practical quality of our solutions

The objective value denotes the quality of the computed reconfiguration plan. In practice, this quality is
mostly characterized by the amount of actions to execute and the estimated application duration of the plan.
Such a representation of the solution was not included in the original paper for space constraints.

Figure 5 and 6 show for the new implementation, the practical cost of the computed plans, for the
instances with a variable consolidation ratio and a variable datacenter size, respectively. We observe first

1000
900 | HEEEE new-rebuild
gop |- Tl new-repair
NN new-repair,sides

. new-rebuild
30 - mmmm new-repair
| EEEEE new-repair,sides

q
o
Q
12
c
g 700 < 25
2 S
S = 20
“6. 3 15
2 S 10
g
5 5
Q
< o0
21 3:1 4:1 5:1 6:1 21 3:1 4:1 5:1 6:1
Consolidation Ratio Consolidation Ratio
(a) Number of actions (b) Estimated application duration

Figure 5: Practical cost of the reconfiguration plans with variable consolidation ratios

30

600
. new-rebuild

25 - I new-repair
NN new-repair,sides

I new-rebuild
500 - I new-repair
EE new-repair,sides

"
o
Q
12
c
2 =
S 400 5
[5) -
® 300]
s 3
2 200 é
@
100 8
g
0 <<

x1 x2 x3 x4 x1 x2 x3 x4

Datacenter size Datacenter size
(a) Number of actions (b) Estimated application duration

Figure 6: Practical cost of the reconfiguration plans with variable datacenter sizes

that the gain between the rebuild mode and the repair mode is very interesting in practice. Indeed, for
the biggest problems, the estimated application duration is divided by up to 2. With faster reconfiguration
plans, Entropy will be more reactive: it will quickly fix performance issues while being able to manage VMs
with frequent resource requirement variations. We also observe a significant reduction in the number of
actions to execute. In practice, a fewer amount of migrations will then be executed in the repair mode.
This improvement reduces the temporary performance degradation for the VMs involved in migrations while
saving network bandwidth.

Finally, we observe that the practical quality of the reconfiguration plans is mostly equivalent when the
side constraints are considered. For the instance set x4, only 6 instances have a reconfiguration plan made up
with more actions when the side constraints are considered. This is explained by the VM placement heuristic
in the repair mode. Indeed, the search heuristic computes that about half of the servers are candidates to
host VMs with a guarantee to have their associated action scheduled without any delay.

3 Conclusions

The modifications we performed on Entropy lead to a major improvements on our results. With regards to
the published results, Entropy is now capable of solving up to ten time faster instances that can be harder
to solve, while providing better reconfiguration plans.

It has to be noticed that our optimizations do not change the theoretical complexity of the problem.
The solving duration of the instances is still exponential with regards to the size of the instances and the
consolidation ratio. However, we have shifted the solving capability of Entropy to a point that current
instances are no longer complex and big enough to show the limitation of our implementation.

References

[1] C. Bessiere, E. Hebrard, B. Hnich, and Z. Kiziltan. Among, common and disjoint constraints. In In
CSCLP: Recent Advances in Constraints, volume 3978 of LNCS, pages 29-43. Springer, 2006.

[2] R. Bolze, F. Cappello, E. Caron, M. Daydé, F. Desprez, E. Jeannot, Y. Jégou, S. Lanteri, J. Leduc,
N. Melab, G. Mornet, R. Namyst, P. Primet, B. Quetier, O. Richard, E.-G. Talbi, and I. Touche.
Grid’5000: A large scale and highly reconfigurable experimental grid testbed. Int. J. High Perform.
Comput. Appl., 20:481-494, November 2006.

[3] F. Hermenier, S. Demassey, and X. Lorca. Bin repacking scheduling in virtualized datacenters. In J. Lee,
editor, Principles and Practice of Constraint Programming, CP 2011, volume 6876 of Lecture Notes in
Computer Science, pages 27-41. Springer Berlin / Heidelberg, 2011.

