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Abstract—Sustainable energy sources such as renewable
energies are replacing dirty sources of energy in order to
address the environmental challenges of the century. In order
to operate data centres with renewable energies we have to
mitigate their volatile and variable nature. In this paper, we
present the Energy Adaptive Software Controller (EASC), a
generic software controller and interface that developers can
use to make their application adaptive to renewable energy
availability. Adaptivity is realized through the concept of
working modes which allows to run an application under
various performance levels. We advocate for a collaborative
approach involving the developers of the applications in order
to use the renewable energies more efficiently. The notion
of EASC allows to abstract away the details of application
scheduling, execution, and monitoring. We demonstrate the
applicability and genericity of the EASC concept through four
different instantiations. These instantiations cover two types
of applications: task-oriented and service-oriented; and two
kind of computing environments: Infrastructure-as-a-Service,
and Platform-as-a-Service. The EASC has been trialled in the
data centre of the healthcare agency of Trento, Italy and in the
laboratory of HP Milan, Italy, with a mix of energy sources:
national grid and local solar panels. The experimental results
show how the EASC allowed to increase the renewable energies
usage of 14% and 4.73% for Trento and HP Labs trials,
respectively.

Keywords-Renewable energy, Data centre, Adaptive applica-
tion, Cloud computing

I. INTRODUCTION

The rise of the energy consumption in data centres, and
the high share of their electricity consumption around the
world [1] induced data centres owners to take actions.
Energy efficiency measures has been introduced in order to
reduce the energy consumption of data centres, and now we
move towards sustainable energy sources such as renewables
[2] [3] [4] in order to address the current environmental
challenges. For example, Google’s data centres are currently
operated with a 35% share of green energy1, whereas 87%
of energy consumption of Apple’s data centres comes from
renewables2.

1http://www.google.com/green/energy/
2https://www.apple.com/environment/

With the recent adoption of renewable energies to power
data centres [2], the research community enlarges its vision
to associate with purely quantitative energy consumption
reduction, the notion of quality of the energy consumed,
i.e. the capacity to rely as much as possible on sustainable
power sources. Differently from brown energy sources, the
availability of renewable energies is very volatile and time
dependent: e.g. solar power is obtainable only during the
day, and is subject to variations due to the meteorological
conditions. The goal is then to schedule the workload of
running applications according to the forecasted renewable
energy availability.

The problem is, however, that data centres are rather
heterogeneous environments with many different kind of
applications with different kind of computing styles: for
example Infrastructure-as-a-Service (IaaS), Platform-as-a-
Service (PaaS) and Software-as-a-Service (SaaS). The ap-
plications running on those platforms do not cooperate to
provide a scheduling of the workload that matches the times
where the renewable energies are available.

In order to address this problem, researchers proposed
various solutions. For instance, in [5] authors proposed
energy adaptive applications that reconfigure their runtime
execution performance according to energy objectives, how-
ever not considering renewable energies. Authors in [2] [3]
[4] have taken into account renewable energies; however,
these papers are application-specific. For instance, with
the aforementioned solutions service-oriented applications
cannot get adaptive. The emergence of cloud computing
provided the users with the ability to scale their services
horizontally or vertically according to the demands [6].
In addition, the notion of adaptive applications has been
introduced in [7].

In this paper, we advocate for a generic and a collab-
orative approach that involves developers of applications
thanks to the notion of Energy Aware Software Controller
(EASC). The EASC is a generic software controller that
application developers/administrators can use to make their
application adaptive to renewable energy availability. A data
centre can support a mix of task-oriented and service-
oriented applications that are made adaptive to renewable



energy availability. The EASC abstracts away the details
of application scheduling, execution, and monitoring. The
EASC constitutes the southbound subsystem of a prototype
implementation of the EU project DC4Cities3.

This paper makes the following contributions:
• The EASC, a software controller allowing to develop

renewable energy adaptive applications of any type.
Software developers can integrate it into their appli-
cations to make them adaptive to the current energetic
situation.

• An API, the Energy Adaptive Software Control Inter-
face, allowing applications to receive energy related
instructions.

• Four different EASC instantiations to demonstrate the
genericity and the applicability of our concept. These
instantiations cover two types of applications: task-
oriented and service-oriented; and two kind of com-
puting environments: IaaS and PaaS.

• An practical validation of the task-oriented and the
service-oriented EASCs inside two data centres in Italy.
The task-oriented EASC was trialled in the data centre
of the healthcare agency of Trentino that is powered
by the national grid, while the service oriented EASC
was trialled in the lab of HP Milan that is also powered
by local solar panels, in addition to the national grid.
These experiments confirmed that the EASC concept
allows to increase the renewable energy usage of both
kinds of applications. The renewable energy percentage
improvement are 14% and 4.73% for Trentino and HP
Labs trials, respectively.

The remainder of the paper is organized as follows.
Section II describes the EASC concept and architecture.
Section III describes the various EASC instances. Section
IV presents the experimental results. Section V is a review
of prior work. Finally, Section VI describes next steps and
concludes the paper.

II. ENERGY AWARE SOFTWARE CONTROLLER

A. Overview & Context

In this section, we describe an overview of the EASC and
its context. For each application in a data centre, the EASC
role is to build a workload scheduling plan according to a
power budget, to enact the plan and finally to monitor its
activities and energy consumption. Each EASC in the data
centre receives a power budget from the central system of
DC4Cities, called the CTRL. This is done through the inter-
face called the Energy Adaptive Software Control Interface.
This interface defines a standardized communication mean
for all energy related information toward the applications of
a data centre. The power budget transmitted consists in a
recommended power consumption for each time of the day.

3http://www.dc4cities.eu/

To compute the power budget, the CTRL collects a certain
number of informations from the data centre, from the
energy provider and from the so-called Energy Management
Authority (EMA). The EMA provides a set of objectives
regarding the consumption of the renewable energy by the
data centre. In the context of a Smart City, the EMA is
integrated inside the city management operations to provide
renewable energy consumption objectives for the major
energy consumers through the city. The CTRL also needs
the energy availability and source mix forecasts to determine
its reference consumption levels to meet the energy and
power goals provided by the EMA. This information is
retrieved and continuously updated from the energy and
power forecast data providers. After receiving the renewable
energy availability and forecasts, the CTRL computes the
ideal power quota for the next 24 hours for the full data
centre. This ideal power quota is split into a set of power
budgets for each application of the data centre, and trans-
mitted to the EASCs through the Energy Adaptive Software
Control Interface. This mechanism is applied iteratively;
each application is monitored and if needed the CTRL will
augment or reduce its allocated power budget through time.

B. Architecture

This section describes the EASC architecture, its compo-
nents and APIs. Figure 1 illustrates a high-level architecture
of the EASC components, including its API interface toward
the CTRL. The EASC implements workload scheduling
techniques that can reconfigure the applications according to
the power budgets. The power budget is expressed as a series
of time slots, covering a full day, with a power associated
to each slot. Each slot denotes a recommended amount of
power that the application should consume. We assume a
time slot is a 15 minute period in our experimentation.
The EASC selects the possible working modes (WMs) for
the application according to the power budgets, the energy
profiles of the working modes, and the SLAs.

The EASC allows the application operator to define the
KPIs of his application, its SLA and its working modes.
The KPIs are measured in term of a number of business
items per unit of time. For example, the operator can define
the business item to be the number of web pages served by
his application, a number of files processed or a number of
reports generated. The SLA are defined as a threshold on the
KPIs that the EASC must guaranty. Depending on the type
of application, the objectives of the SLA can be cumulative
(task-oriented application) or instantaneous (service-oriented
application). A working mode consists of:

• an actuator able to start and stop the working mode,
• an estimated power consumption,
• a maximum attainable performance for the KPI defined,
• a certain number of resources associated to that working

mode.



Figure 1: The EASC architecture

Based on this information, the EASC computes a schedul-
ing for the application called the working mode plan. A
working mode plan is composed of a working mode for
each time slot. The EASC shall be able to reconfigure the
application according to the working mode plan selected.
For example, the EASC will send to the cloud manager
reconfiguration actions in order to instantiate or stop VMs,
boot or stop nodes. In addition, the EASC monitors the work
done by its application in term of business items processed.
We can then deduce a work left to do: it is the difference
between the guaranteed number of business items (SLA)
and the work done. This work left to do is what we have
to schedule within the working mode plans. In terms of
monitoring, the EASC shall be able to measure the KPI
of the application at any moment. The EASC calls an so-
called Energy Service to compute the expected energy profile
for each working mode. This service allows to predict the
consumption of the various components of the infrastructure
(servers, VMs, containers). For each component of the data
centre, a regression analysis is performed by the Energy
Service on historical data in order to find a model of its
consumption.

III. EASC INSTANTIATIONS

This section introduces the implementations of the EASC
concept for various application types and environments.

A. EASC for Task Oriented Applications

Task oriented applications are characterized by the fact
that they have a certain amount of tasks to perform. Those
tasks are characterized by a minimum start time, a deadline,
and a wall-time. Some of those tasks are deferrable: for
example an anti-virus scan have to be performed every
day, but can be scheduled at various time of the day.
Other examples of task oriented applications include video
conversion services or report generation applications.

When generating the working mode plan, the EASC can
follow various policies:
• Proportional: this policy schedules the tasks in such

a way that the expected energy consumption profile is
similar to the power budget profile.

• Aggressive: this policy schedules all the tasks during the
hours where there is the maximum renewable energy
availability. In a typical day with solar energy available,
the EASC will use the most powerful working modes
during the central hours in order to complete the tasks.
However, it is relatively risky; if the renewable energy
forecast changes through time there is a risk that the
SLA will not be met.

• Eager: this policy schedules all tasks at the earliest
possible. This policy is more appealing when there is
uncertainty over the future availability of renewable
energy; therefore it is rather conservative.

The algorithm presented in Figure 2 allows to schedule
the tasks of the application so as to follow the policies
presented. It presents two parameters: the aggressiveness and
the eagerness. The aggressiveness controls the possibility
for the application to consume more or less aggressively
the renewable energies. For example, at a high aggressivity
level the application will run at the highest performance
level when renewable energies are available, and at the
lowest performance when they are not. On the other hand,
the eagerness controls the necessity for an application to
complete its tasks more or less early. A low eagerness allows
to be more flexible with regard to the scheduling of the
applications tasks during the period of availability of the
renewable energies.

Figure 2: EagerAgg algorithm overview

In the algorithm 1, the function AggTransform trans-
forms a power budget by favoring the times of the day
where there is more renewable energy. The resulting power
consumption plan consumes the same amount of energy



Algorithm 1 EagerAgg algorithm

1: constant workingModes : List of WorkingMode

2: function
AGGTRANSFORM(pb : Listof(TimeSlot, Pow), aggFact : Float)

3: for all (timeSlot, power) ∈ pb do
4: power ← power ∗ aggFact
5: . normFactor is computed so that the total energy of the final power

budget remains the same than the initial one
6: power ← power ∗ normFactor
7: end for
8: return pb
9: end function

10: function EAGERTRANSFORM(pb :
Listof(TimeSlot, Power), eagerFactor : Float)

11: ∆BP ← max(pb)−min(pb)
12: eagerV ector ← defEagerV ector ∗∆BP ∗ eagerFactor
13: . sum of two vectors of equal length
14: eagerBP ← pb + normEagerV ector
15: return eagerBP
16: end function

17: function
SLATRANSFORM(pb : Listof(TimeSlot, Power), sla : Float)

18: . normFactor is computed so that the total energy of the final power budget
allows to run the correct working modes during enough time to cover the full
SLA

19: normFactor ← f(workingModes.maxBizPerf, sla)
20: for all (timeSlot, power) ∈ pb do
21: power ← power ∗ normFactor
22: end for
23: return pb
24: end function

25: function WMALLOCATION(pb : Listof(TimeSlot, Power))
26: . sort BP by power
27: sortedBP ← sort(pb))
28: for all (timeSlot, power) ∈ pb do
29: . select the WM that have the power closest to the current power

budget power
30: plan(timeSlot)← nearest(workingModes, power)
31: end for
32: return plan
33: end function

that the input power budget, but it presents more power in
the maxima of the curve, and conversely less power in the
minima of the curve. This allows the function WMAllocation
to select more powerful working modes when renewable
energy is available, and thus complete more quickly the
tasks to perform. A high aggFactor makes the application
consumes the renewable energies more aggressively. The
function EagerTransform, on the other hand, transforms
a power budget by favouring the first time slots in the
power budget. It uses a vector defEagerV ector, which
have the same size than the power budget. This vector
defEagerV ector defines a simple descending array of
powers, for example [100W, 99W .. -99W, -100W]. It
represents the preference for the early time slots in the power
budget. The transformation defined in EagerTransform
then transforms the power budget so as to allocate more
power to the early time slots. The input factor eagerFactor
allows to tune this operation according to the preference
of the application for running its tasks eagerly or not.
Like for AggTransform, this transformation allows the
function WMAllocation to select more powerful working

modes at early time slots, and thus complete earlier the
tasks to perform. The SLATransform ensures that the
power budget has enough energy to allow the application to
complete its full SLA. If it’s not the case, a normalization
factor is applied to the power budget to augment it or reduce
it accordingly. The complete EagerAgg algorithm is the
simple composition of these four functions.

B. EASC for Service Oriented Applications
Service oriented applications, by contrast with the task

oriented applications, do not define specific tasks with a start
and a stop dates. On the contrary, they have to maintain a
certain level of performance all the time, to serve clients.
Typical examples of such applications include Web servers,
database services and mail servers. The services are charac-
terized by one or several KPIs together with their mandatory
levels for each time-slot. For this type of application we
created an algorithm called the MinMaxAgg presented in
algorithm 3 and Figure 2. To allow a certain flexibility of
the application, a system of reward/penalty is included in
the SLA. In accordance with the client, if the application is
running slightly under the SLA, a reward/discount is paid
by the data centre.

Figure 3: MinMaxAgg algorithm overview

In this algorithm, the function BestTS selects the X
timeslot of the day where there is more power in the power
budget. Those timeslots are generally corresponding to the
best hours for renewable energy availability. The factor X is
computed relative to the aggressiveness factor. During those
best times, a working mode allowing a better performance
than requested by the SLA is selected. During the rest
of the hours, a working mode slightly under the SLA is
applied. Reward and penalty apply correspondingly, they are
calculated so that they cancel each other.

C. EASC-PaaS
The EASC design has been extended to support Platform-

as-Service based applications with EASC-PaaS. PaaS pro-
vides services to easily provision, scale, and monitor ap-
plications with a limited user/administrator intervention. In



Algorithm 2 MinMaxAgg algorithm
1: constant SLA: List of (TimeSlot, BusinessPerf)
2: constant workingModes : List of WorkingMode

3: function MINMAXAGG(pb : Listof(TimeSlot, Power), numTS : Int)
4: return MinMax(BestTS(bp, numTS))
5: end function

6: function MINMAX(filteredBP : Listof(TimeSlot, Power))
7: . for the best timeslots
8: for all (timeSlot, power) ∈ filteredBP do
9: . select the WM closest to the power budget, without violating the SLA

10: plan(timeSlot)← getWM(SLA(timeslot).businessPerf, power)
11: end for
12: . for the rest of the timeslots
13: for all (timeSlot, businessPerf) ∈ (SLA \ filteredBP ) do
14: . select the WM that have the business performance just above to SLA

business performance
15: plan(timeSlot)← above(workingModes, businessPerf)
16: end for
17: return plan
18: end function

19: function BESTTS(pb : Listof(TimeSlot, Power), numTS : Int)
20: . sort BP by power
21: sortedBP ← sort(pb))
22: . get the numTS first timeslots
23: filteredBP ← take(sortedBP, numTS))
24: return filteredBP
25: end function

26: function GETWM(minBusinessPerf : Float, power : Power)
27: . get only the WM that have a sufficient performance
28: filteredWM ← filter(workingModes, workingMode.businessPerf >

minBusinessPerf)
29: . get the WM that have a power closest to the reference power
30: filteredWM2← nearest(filteredWM.power, power)
31: return filteredWM2
32: end function

EASC-PaaS the concept of working mode is mapped to the
scaling operation services provided by PaaS infrastructures.

However in a traditional PaaS environment, scaling up
and down an application will not necessarily have a big
impact on energy consumption. The reason is that most
PaaS architectures have static provisioning: scaling down
an application or a group of applications will not result in
the switching off of physical servers. In the Cloud Foundry4

PaaS environment for example, a certain number of VMs5

able to host application containers are provisioned when the
infrastructure is installed, and does not change afterwards
unless an operator redeploys the infrastructure manually. The
applications are in turn embedded inside so-called containers
hosted on the VMs.

The energy management must then takes place in the three
layers:

• application layer: The EASC will scaling up and down
the number of containers owned by an application based
on the renewable energy availability,

• PaaS layer: the containers must be consolidated inside
the minimum number of VMs,

• IaaS layer: the VMs must be consolidated inside the

4https://docs.cloudfoundry.org
5https://docs.cloudfoundry.org/concepts/architecture/execution-

agent.html

minimum number of physical servers. The freed-up
servers should then be switched off to save energy.

Figure 4: EASC-PaaS architecture

The Figure 4 provides a high-level view of the EASC-
PaaS interactions with its environment. In this figure, the
EASC-Scheduler module is the normal scheduler for task
and service oriented applications described above. Based on
this scheduling, the scaling of the application is performed
through the PaaS Extension module, that connects to the
PaaS infrastructure. The PaaS infrastructure is then instru-
mented to perform the consolidation of the containers in
the VMs. This is done by an external component called
the PaaS consolidator. This component is also in charge
of augmenting or reducing the number of VMs as needed.
Similarly, the IaaS layer is instrumented to allow VM
consolidation on the servers. This is also performed by
an external VM consolidator engine called Plug4Green [8].
The final objective of this tool-chain is to make sure that
the scheduling operations performed by the EASC results
effectively in energy consumption variation in the PaaS
environment. Finally, the EASC-PaaS contains a component
called PaaS Prediction model able to predict the behaviour
of the underlying infrastructure and to compute the power
consumption of each working mode accordingly, so as to
permit an accurate scheduling.

D. EASC-IaaS

The EASC-IaaS aims at controlling the resource allocation
of VMs running on nodes with regards to an energy budget
and different SLAs. Similarly to existing IaaS platforms, the
resources that are subject to adaptation are the computational
resources. In practice, the EASC increases or decreases the
computational power allocated to the VM virtual CPUs. As
the CPUs are the hardware components that consumes most
of the power inside a server, this adaptation permits to align
the VM computational performance with a power budget.

To abstract the computational power from the hardware
peculiarities, we evaluate computational power using a met-



ric called CU (Computational Unit). This approach is aligned
with current practices. For example, Google Compute En-
gine uses GCEUs to define the compute power of their
templates6.

A SLA for the EASC-IaaS is defined as a minimal amount
of CU to allocate to a VM over the agreement period while
a working mode consists in a particular CU allocation,
so a particular performance level and power consumption.
Scheduling the working modes for an EASC-IaaS consists
then in choosing for each time slot, a working mode that is
below the power budget while ensuring, that at the end of
the agreement, the total amount of allocated CU will be at
least equals to the threshold stated in the SLA.

To enact a working mode, the EASC-IaaS sends a CU
allocation command to the underlying IaaS. In the case of
an OpenStack IaaS, this CU allocation command will the the
CPU entitlement feature7 to cap the computational power of
the VMs.

IV. EXPERIMENTATIONS AND EVALUATION

In this section, we present the experimentations within
two trial sites in Trento and Milan. We have measured
RenPercent metric in order to evaluate the proposed solution
in terms of renewable energy usage. RenPercent expresses
the percentage of renewable energy consumed by a DC in
a certain period of time (1 day, 1 week, etc.). This metric
is the main metric to assess the achievement of the EASC.
With this metric we can compare the coverage of the DC
energy consumption of renewable energy before and after
implementing the EASC.

A. Trento Trial

In this trial, an EASC encapsulates a real application
producing medical reports, within the data centre of the
healthcare agency of the Trentino province.

1) Application Specification: Trento trial application is a
compute-intensive task-oriented application. Users need to
wait some minutes to get the report generation done. The
report generation process can be scheduled in advance; thus,
the idea is to prepare a cached copy of each report and have
it ready once the user asks for it. This leaves an opportunity
for EASC to shift the report generation in time during a day.
The only constraint (as per SLA) that EASC planning has
to respect is that 780 reports have to be generated within a
day, from midnight to midnight.

The application business unit for this trial is the Report
and the business performance (BizPerf) unit is the number
of reports generated per minute. Table I defines five working
modes based on the number of parallel processes that run
simultaneously to generate reports; minimum corresponds to
execution of one process at a time (sequentially); medium1

6https://cloud.google.com/compute/docs/machine-types#gceu
7https://wiki.openstack.org/wiki/CPUEntitlement

corresponds to execution of 4 parallel processes, etc. Server-
sOff working mode was defined for referring to the case
of no activity execution (main production servers off). The
baseline has been chosen with the application producing
reports continuously until the SLA is reached, at a low level
of performance using the working mode minimum.

Table I: Trento Trial Card

WM Processes BizPerf Power (Watt)
ServersOff 0 0 19,5
minimum 1 0,53 665,8
medium1 4 1,88 761,9
medium2 7 3,0 844,4
maximum 10 3,33 864,2

In this trial, hardware resources include two IBM rack
servers as compute nodes to run trial application: IBM
xSeries 366 8863-3RG: 4 Intel Xeon Processor 7020 (2M
Cache, 2.66 GHz, 667 MHz FSB) 4 cores, RAM 32 GB,
HDD 30GB-RAID1, HDD 200GB-RAID5.

2) Energy Mix: The trial has a single power source from
the Italian national grid. We followed a Measurement &
Verification (M&V) methodology [9] and built six days
profile that reflects typical days in various seasons in Italy.
This methodology allowed us to simulate an entire year trial
run with just 6 different profiles, one per day.

(a) Renewable energy percentage in national grid

(b) Power actual vs power baseline vs power planned

Figure 5: Trento trial execution behaviour with DC4Cities

3) Evaluation: Figure 5a shows the renewable energy
percentage in the Italian grid for the six profiles con-
secutively. Figure 5b represents power budget, real power
consumption, and baseline power consumption. This graph
show that the baseline power (blue curve) is flat as expected,
it also shows that the real power (grey curve) follows closely
the power budget (orange curve). The peaks in the renewable
energy percentage are always accompanied by peaks in the
power budget and real power curves. Comparing Figures 5a
and 5b we can observe that the EASC is able to follow



the renewable energy percentage curve. In sum, the graphs
shows that the EASC tries to exploit the peaks in renewable
energy by switching to powerful working modes in order to
perform all the tasks in the shortest time possible.

Table II presents the numerical results of RenPercent
metric for all six days. In addition, this table presents average
results of all six days. The last row presents results for a
simulation of the entire year (six days spread on an entire
year).

Table II: Trento Trial Results

Profile RenPercent RenPercent baseline
Day 1 37.65% 30.03%
Day 2 58.30% 49.24%
Day 3 49.73% 39.19%
Day 4 66.56% 45.98%
Day 5 77.94% 57.27%
Day 6 56.29% 37.06%

All days 57.88% 43.13%
A year 48.22% 37.39%

Considering all six days together the renewable energy
percentage went from 43.1% up to 57.9%, an absolute
improvement of 14%. The renewable energy usage im-
provement is greater than 10% for all days. Moreover,
the renewable energy usage is very close to the maximum
percentage of renewable energy available in the grid; this
difference is always less than 5%.

B. Milan Trial

In this section, we describe Milan trial that presents a
service-based application. The experiment takes place in HP
Italy Innovation Center lab-grade resources hosted at HP
premises in Milan, Italy.

1) Application Specification: HP trial workload is based
on a Web application called HP Life. It is a testing lab
for a worldwide service offered by HP. This application
needs to be always available to the users (24 hours per
7 days) as it offers a Web based e-learning platform for
entrepreneurs spread over the globe. Due to this type of SLA,
this trial is quite different from the Trento trial; furthermore
the workload cannot be shifted in time. The KPI for this
service is the total number of requests served per minute
(Requests/minute). There is a specific SLA value for each
timeslot of the day expressing the expected business perfor-
mance during that time interval. The red curve in Figure 6
presents the SLA. The other coloured curves represent the
trial performance for each day.

In this trial, a working mode can span over distributed
data centre resources around the world, i.e. Region US West,
Region US East, Region Europe. Working modes definition
are aligned to the concept of active region (data centres sites)
balancing the workload of the system:

Figure 6: SLA and measured performance for each day

• WM3SF: All 3 sites work at full capacity (WM-ID:
30).

• WM2SF1SM: 2 sites work at full capacity, 1 site works
at minimum capacity (WM-ID: 25).

• WM2SF: 2 sites work at full capacity (WM-ID: 20).
• WM1SF1SM: 1 site works at full capacity, 1 site works

at minimum capacity (WM-ID: 15).
• WM1SF: 1 site works at full capacity (WM-ID: 10).
• WM1SM: 1 site works at minimum capacity (WM-ID:

5).
WM-ID is proportional to the amount of used resources

and corresponds to the working mode power. The WM-ID
are numerical values when displaying working modes in the
daily graphs. Figure 7 represents the overall power con-
sumption of the system when running in a certain working
mode (on the Y axis) while delivering a certain business
performance (on the X axis). It is visible on this graph
that each successive working mode allows to reach a bigger
business performance, but at a bigger energetic cost overall:
the curve for a given working mode is practically always
above the one of the previous working mode.

Figure 7: Business Performance (Req/min) versus Power
Consumption (W) for each working mode

The baseline has been measured on default system config-



uration, i.e. when all servers are turned on and operational
(a trial run with working mode WM3SF).

2) Energy Mix: The HP experiment has a dual power
source: one from Italian national grid, and the other from
local renewable generation. On top of the roof of the Lab
premises, 4 dedicated photo-voltaic (PV) panels have been
installed. Each panel can provide a maximum power of
250W; thus with 4 PVs configuration, maximum power
generation is 1KW. This energy context offers a unique
combination of energy sourcing.

Following M&V methodology [9] we’ve got 4 day profiles
for the PV production, and with its aggregation with the
Italian national grid we built four days profile that reflect a
full-year behaviour of energy ecosystem for HP Experiment
in Milan.

3) Evaluation: HP trial has been run for each 4 day
profiles once with the baseline, and once with the EASC.

Table III: HP Experiment Trial Results.

Profile RenPercent
baseline

RenPercent
EASC

RenPercent
Delta

RenPercent
Delta%

Day 1 68.20% 70.34% 2.14 3.13%
Day 2 61.85% 64.68% 2.83 4.57%
Day 3 58.57% 61.65% 3.08 5.25%
Day 4 53.99% 57.26% 2.27 6.05%

Trial Days 60.65% 63.52% 2.87 4.73%

Figure 8 represents an in depth view of trial run for each
day. The X axis is the hour of the day; the yellow area
represents the PV power (primary Y axis is power in Watt)
while the light green area is the renewable percentage of the
grid (secondary Y axis on the right). The light blue line is the
planned power (power budget in terms of EASC) and the red
line is the actual power. The purple line in the bottom part
is just a qualitative indication of the selected working mode
(numerical WM-ID), ranging from 5 (1SM) to 30 (3SF) in
steps of 5 units (see previous WM-ID table).

Similar to the Trento trial, the graphs in Figures 6 and
8 show that the working mode power, and business per-
formance curves follow the planned power curve (power
budget). The peaks in the light blue line (the planned
power) are always accompanied by peaks in the purple line
(working mode power), and the red line (actual power). In
all, the graphs demonstrate how the EASC tries to exploit the
peaks in renewable energy by switching to powerful working
modes, and vice versa to lower performance working modes
when there are less power budget while still respecting the
SLA (the red curve in Figure 6).

Table III presents the numerical results for RenPercent
metric. The average improvement for RenPercent metric is
4.73%. We observe that the improvement is less than the
Trento trial. This is due to the demanding SLA of HP trial,
and being a service-based application.

Table IV: HP Experiment Trial: power and performance
comparison

Profile Total Power
Consumption
(KWh)

Total BizPerf
(requests
served)

Efficiency (Re-
quests/W)

SLA 479K (ref)

Baseline 10.91 (ref) 480K (100.0%) 43.98 (ref)

Day 1 9.42 (-13.60%) 484K (101.0%) 51.40 (+16.87%)
Day 2 9.28 (-13.14%) 474K (98.87%) 51.14 (+16.28%)
Day 3 9.46 (-13.24%) 471K (98.25%) 49.80 (+13.23%)
Day 4 9.43 (-13.51%) 466K (97.22%) 49.43 (+12.29%)

Nevertheless, Table IV summarizes the total power con-
sumption, the total amount of work done (requests served
during the day), and the ”requests served/energy consumed”
for each day of the trial and for the baseline. In terms of
energy efficiency (second column in the table), this trial
presented a significant amount of energy saving (over 13%
energy consumption reduction). In addition, the Figure 6
illustrates that EASC optimization is not causing significant
violations of the SLAs during the trials. That is the total
work done (BizPerf) ranges between +1% to -2.78% with
respect to SLA, as numerical results present in the Table
IV (third column). This demonstrates that work done is
not significantly affected. Therefore, the efficiency of the
whole application is definitely increasing. The improvement
in terms of BizPerf per Power, i.e. Work done/Watt, ranges
between 12.29% and 16.87% (fourth column).

V. RELATED WORK

A survey of the literature shows many researches address-
ing high energy consumption of data centres and energy
adaptive approaches in applications, for example [10] [2]
[4] [3] and [11].

iSwitch [4] adapts the infrastructure itself. Servers are
either powered through the grid or a renewable source. VMs
are deployed by default on servers powered by renewable
energy. When this source becomes scarce, the workload
is migrated to servers powered by the grid and the idle
servers are turned off. In order to adapt to renewables energy
availability, in [12] the authors argue for either pausing VM
executions or migrating VMs between sites based on local
and remote energy availability. These work are similar to
EASC-IaaS.

In [2] and [3] the authors adapt the workload to renew-
ables when it is composed by deferrable jobs. According to
forecasts, the jobs are delayed to periods where renewable
sources are available. The work in [10] makes a step for-
ward by adapting map/reduce applications. The number of
workers and the number of servers hosting them is adapted
according to the amount of available energy. In [3], Goiri et
al. proposed GreenSlot, as a solar power-sensitive scheduling
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Figure 8: HP trial execution behaviour with the EASC

algorithm for data centre workloads. GreenSlot was shown
to reduce data centre costs and increase green power con-
sumption. In [11], authors exploited workload shifting in
combination with local generation as an adaptation technique
for two purposes: to avoid the coincident peak, and to save
energy cost. In all these papers, workloads are task-based
applications.

In addition, there are similar approaches to minimize
energy costs, and carbon emissions. In order to reduce
electricity costs in SCs, power-aware resource management
without degrading utilization has been proposed in [13],
[14]. The novelty of the proposed job scheduling mechanism
is its ability to take the variation in electricity price into
consideration as a means to make better decisions about job
start times. The GreenStar Network [15] provides similar
efforts toward developing green load-following carbon pro-
tocol. In [16], authors explored the opportunities for HPC
clusters to adapt to dynamic electrical prices, variation in
carbon intensity within an electrical grid, and the availability
of local renewables. The results were that adaptation to
the renewables availability and dynamic pricing lead to
significant gain, while not for adaptation to the variation
in the electrical grid carbon intensity.

By comparison with aforementioned approaches and solu-
tions, the EASC approach allows to bring together different
environments with a mix of deferrable (task-oriented) and

non-deferrable (service-oriented) applications, running over
IaaS or PaaS paradigms. In EASC we advocate for a generic
approach that involves the infrastructure and the resource
manager as well as the developers of applications.

VI. CONCLUSION AND FUTURE WORK

The recent adoption of renewable energies to power data
centres brings new challenges. While strong efforts are
continuously made to reduce the energy consumption, the
intermittent nature of the renewable sources impose also to
align the performance of the applications with the energy
availability periods.

In this paper, we presented the notion of Energy Adaptive
Software Controller (EASC), a generic software controller
that developers can use to make their application adaptive
to renewable energy availability. To integrate the notion of
EASC into a legacy application, a developer only needs to
identify its various KPIs, working modes and to declare the
commands to use to enact a working mode. The EASC then
provides different scheduling algorithms to continuously
choose the most appropriate working mode to use for the
controlled application with regards to its SLAs and a power
budget.

We validated the portability of the notion of EASC
through the complete implementation of two legacy appli-
cations. The first one is a task-oriented application used to
generate reports in the healthcare domain. The second one



is HP Life, an international eLearning lab available through
a Web application. We also confirmed the practical benefits
of the developed EASCs on two different testbeds: one only
powered by the Italian national power grid, and the other that
is the case of HP life, through a dual power sources from
photovoltaic arrays, and national power grid. Experiments
over a week also proved the EASCs increased the usage of
renewable energies by aligning the application performance
with the energy availability periods.

As a future work, we plan to propose a coordination
mechanism, at the data centres level, to decide for each
EASC the most appropriate working mode depending on
the energy availability and context-specific pricing models.
We are also planning to enhance our model to support co-
dependent EASCs that can perform adaptation at multiple
levels.
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