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Abstract

To maintain an energy footprint as low as possible, data centres manage their
VMs according to conventional and established rules. Each data centre is however
made unique due to its hardware and workload specificities. This prevents the ad-
hoc design of current VM managers from taking these particularities into account
to provide additional energy savings. In this paper, we present PlugdGreen,
an energy-aware VM placement algorithm that can be easily specialized and
extended to fit the specificities of the data centres. PlugdGreen computes the
placement of the VMs and state of the servers depending on a large number of
constraints, extracted automatically from SLAs. The flexibility of PlugdGreen is
achieved by allowing the constraints to be formulated independently from each
other but also from the power models. This flexibility is validated through the
implementation of 23 SLA constraints and 2 objectives aiming at reducing either
the power consumption or the greenhouse gas emissions. On a heterogeneous test
bed, PlugdGreen specialization to fit the hardware and the workload specificities
allowed to reduce the energy consumption and the gas emission by up to 33%
and 34%, respectively. Finally, simulations showed that Plug4Green is capable
of computing an improved placement for 7,500 VMs running on 1,500 servers
within a minute.

Keywords: Extensibility, Constraint Programming, Cloud Computing, Data
Centre, Resource Management, Energy Efficiency, Service Level Agreement.

1. Introduction

Cloud data centres provide powerful ICT facilities to host a large spectrum
of applications. Originally, data centre operation management has been focused
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on improving metrics like performance, reliability, and service availability. Fur-
thermore, due to the rise of service demands, data centres have to constantly
evolve in size and complexity. This and the continuous increase of energy cost
have prompted the ICT community to add energy efficiency as a new key metric
for improving data centres facilities.

VM consolidation is the norm to improve energy efficiency. In practice, an
ad-hoc VM placement algorithm considers the data centre and the workload
properties to allocate the VMs among the servers according to energy objectives [1,
2, 3, 4, 5]. However, the hardware refreshing, the workload characteristics but
also the wide variety of SLAs make each data centre unique. As a result, the
original algorithm may not be appropriate anymore, while its ad-hoc nature may
prevent it from being upgraded according to the new data centre properties.

These evolutions are calling for a VM allocation approach that is flexible
enough to address data centres complex and changing nature. In other words, a
VM placement algorithm has to take into account a large spectrum of tuning
possibilities and constraints associated with data centre specificities. As an
example, an energy-aware algorithm should be able to provide additional energy
savings by being fine-tuned according to multiple particular hardware and SLAs.
We define the following requirements on flexibility that have to be met by a VM
placement algorithm: i) be extensible with users and operators new constraints
and requirements, especially in the case of new SLA definitions associated with
new services. ii) be adaptable to any data centre and its particularities, and be
adaptable to new hardware installed.

To satisfy the requirements, we propose to use the Constraint Programming
(CP) [6] paradigm. This paradigm and its associated algorithms have already
been applied to address common users requirements such as performance and
fault tolerance [7, 8]. However, the lack of energy models prevented it to
explicitly address the energy related concerns which become of vital importance
in upgraded and consolidated data centres with improved capacity.

In this paper we present PlugdGreen, an energy aware VM manager based
on CP, with a special focus on extensibility. We show how the flexibility
realized in our framework can address new requirements arriving in a data centre.
Furthermore, we show that an increased flexibility, by allowing to fine-tune
the algorithms, allows better energy savings. We validate our approach by
implementing a use case on energy efficient VM management in data centres
while meeting the requirements on performance. The paper main contribution,
in terms of its practical value, is threefold:

o Flexibility: We propose and implement 23 VM placement constraints to
address common concerns such as hardware compatibilities, performance,
security issue, and workload instability. We also propose 2 objectives: the
first one reduces the overall energy consumption while the second one
reduces the greenhouse gas emission. The usage of CP makes placement
constraints, objectives, and algorithms independent from each other, which
is crucial for extensibility: new concerns can be added in the VM manager
without changing the existing implementation.



o Efficiency: We show that using our framework in a realistic cloud data
centre environment allows to reduce the overall energy consumption up
to 33% and the gas emission up to 34%. These savings are achieved
by considering the servers hardware heterogeneity, their different energy-
efficiency and different compositions of SLAs.

e Scalability: We show by simulation how such an approach can be scalable.
In particular, we were able to compute the improved placement of 7,500
VMs on 1,500 servers, while respecting their SLA.

This paper is organized as follows: Section 2 presents the design of PlugdGreen.
Its implementation is discussed in Section 3. Section 4 evaluates its practical
benefits. Section 5 introduces related works and Section 6 concludes the paper.

2. Design

Plug4Green is extensible. The architecture (Section 2.1) allows to extend the
engine by adding new concerns, without modifying the underlying algorithms.
In particular, new constraints (Section 2.2) can be added easily.

2.1. Architecture
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Figure 1: PlugdGreen architecture

Figure 1 depicts the architecture of PlugdGreen. PlugdGreen considers a
set of SLA constraints along with the data centre configuration to compute a
reconfiguration plan as an output. The data centre configuration captures all
the relevant ICT resources of a data centre with their energy-related attributes
and interconnections in an XML format. The reconfiguration plan is a set of
actions (powering on or off a server, migrating a VM, ...) that satisfies all
the constraints and minimizes the current objective. The objective can be to
minimize either the power consumption of a federation of data centres, or the
COs emissions. The diagram shows the clear separation between the Constraints



part (“what” we want to do) and the Models part (“how” to solve the problem),
which is fundamental for extensibility.

Plug4Green is called by the Data Centre Infrastructure Management (DCIM)
for two different events: Single Allocation or Global Optimisation. The Single
Allocation event is triggered when a new VM have to be allocated. PlugdGreen
will compute and return the best server to allocate the VM on, taking into
account the characteristics of the VM, the current state of the data centre, the
SLAs and the current objective. The Global Optimisation event is itself triggered
regularly and PlugdGreen will return a reconfiguration plan. In manual mode,
the data centre operator validate or decline this reconfiguration plan, while in
automatic mode, it is enacted automatically. PlugdGreen will then execute the
plan to reduce the overall data centre power consumption or gas emission while
also respecting the SLAs. The Com/Proz layer ensures that PlugdGreen can be
plugged to different existing DCIM. Its the only part that must be updated to
connect to a new DCIM. Currently, PlugdGreen can be integrated into VMWare!,
Eucalyptus?, and HP Matrix Operating Environment? infrastructures.

2.2. Constraints

Numerous SLAs exists in a data centre. Furthermore those are more and
more extended with energy concerns Our framework provides a language to
express SLAs based on CP, that also takes into account energy constraints. To
show the flexibility of our approach, we prepared an extensive number of SLA
and energy constraints using this language, as showed in Table 1.

SLAs are usually provided as part of an English-written contract between a
client and an IT service provider. Upon receiving this contract, the Capacity
Planning Team (CPT) of a data centre have to translate it into our SLA schema.
The SLA schema is a format allowing the CPT to use the pre-defined constraints
detailed in Table 1. Once the SLA file is ready, it can be submitted to PlugdGreen.
The SLA constraints will then be translated automatically to lower level CP
constraints and processed by a CP engine, with the process shown in Figure 2.
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Figure 2: Translation of the SLA contract into technical SLAs and then to Constraints

Depending on the topology of the data centre, a different SLA contract can
be applied to different groups of servers in the data centre: in this way it is
possible to have several SLA contracts active within the same data centre.

Thttp://www.vmware. com
2http://eucalyptus.com
Shttp://h18004.wwwl.hp.com/products/solutions/insightdynamics/overview.html



Cat Constraint Restriction
HDDCapacity minimum amount of hard disk space available for a VM
CPUCores minimum number of CPU cores available for a VM
CPUFreq minimum CPU frequency available for a VM

Hardware MemorySpace minimum amount of memory space available for a VM
GPUCores minimum number of GPU cores available for a VM
GPUFrequency minimum GPU frequency available for a VM
RAIDLevel minimum Raid level available for a VM
MaxVMperServer maximum number of VMs per server
MaxCPULoad maximum load of CPUs for a server
MaxVLoadperCore maximum virtual load associated to a CPU core

QoS MaxVCPUperCore maximum number of virtual CPU associated to a CPU core
MaxVRAMperPhyRAM maximum amount of virtual RAM per physical RAM
MaxServerAvgVCPUperCore Same as MaxVCPUperCore but averaged for all cores of a server (not

Core per Core)

MaxServerAvgVRAMperPRAM  Same as MaxVRAMperPRAM but on a server basis
Bandwidth minimum network bandwidth available for a VM

Security DedicatedServer a VM will be hosted on a server with no other VMs
Access a certain secure access possibility for a VM (e.g. VPN)
MaxServerPower maximum power consumption for a server

Energy

DelayBetweenVMMigrations
DelayBetweenServerOnOffs
VMPaybackTime
SpareNodes

SpareCPUs

minimum delay between two successive VM migrations

minimum delay between two state changes for a server

allow a VM migration only if the energy spent for the migration is paid
back within the given time interval.

minimum amount of servers that are kept free (spare capacity) in the
data centre

minimum amount of CPUs that are kept free in the data centre

Table 1: SLA Constraints



3. Implementation

In this section we provide details on the model that allowed us to easily build
the constraints presented earlier. We then present the power objective model
and the heuristics we used to increase the scalability of our framework and the
quality of the computed configurations.

8.1. The Plug/Green model

PlugdGreen extends the flexible consolidation manager BtrPlace [8]. The
flexibility of BtrPlace (and consequently of PlugdGreen) comes from the usage
of CP [6]. CP allows modelling and solving combinatorial problems where
the problem is modelled by stating constraints (logical relations) that must be
satisfied by its solution. To use CP, a problem is modelled as a Constraint
Satisfaction Problem (CSP), comprising a set of variables, a set of domains
representing the set of possible values for each variable and a set of constraints
that represent the required relations between the values of the variables. A
solver computes a solution for a CSP by assigning each variable to a value
that simultaneously satisfies all the constraints. A CSP can be augmented to a
Constraint Optimisation Problem (COP) by stating an objective that requires
to minimize or maximize the value of a given variable. The algorithm used to
solve a CSP or a COP is independent of the constraints composing the problem
and the order in which they are provided. When no timeout is specified, the CP
solver computes and returns the solution that lead to the best solutions according
to the objective and the constraints. Otherwise, it returns the best solution
computed so far that still satisfies the constraints. By using CP, we achieve
the important goal of separating two concerns: the development of a placement
objective and the development of constraints that specialise the objective.

In practice, BtrPlace embeds the CP solver Choco? and provides a core CSP,
called the VM Repacking Scheduling Problem (VRSP) that only models the
memory and CPU demands of the VMs, the server’s state and the future VM
placement. By default, BtrPlace does not provide variables, constraints and
objectives that are related to energy concerns. These variables are then provided
by PlugdGreen, as an extension of the VRSP. We use the VRSP as a pivot model
to solve energy-efficient VM placement and server management problems.

Table 2 is summarizing the energy variables that we created, and the variables
that were reused from BtrPlace. As an example, Listing 1 presents the definition
of the constraint MazServerPower is term of these variables:

1 public void injectMaxServerPower(VRSP model, int maxServerPower) {
2 model.post(eq(P, plus(mult(card, §8), a)));
3 model.post(leq(P, maxServerPower));

+}

Listing 1: Definition of constraint MazServerPower

4Choco: http://www.emn.fr/z-info/choco-solver/



Energy related variables

P Future global power consumption of the data centre federation
P(s) Future power consumption of a server s

Ercconsf Energy spent by the reconfiguration plan

E,ove(v)  Energy spent for the migration of VM v

Eonosf(s) Energy spent for switching on or off a server s

Variables used from BtrPlace model

hosters Association array VM /Server of the resulting configuration
card(s) Number of VMs that a server s will host

n“PY(s)  Future CPU load of a server s

nfAM (5)  Future RAM usage of a server s

nHPP(s)  Future HDD usage of a server s

Table 2: Model variables

As a reminder, maxServer Power ensures a maximum power consumption
for a server. Using the CP operators eq, plus and mult we first define the power
of a server P (one of the variables in Table 2). « and § are defined in the
Section 3.3. We then create the constraint that this power P must be less or
equal than a threshold maxServer Power. This constraint is then injected into
the model. The constraint definition is declarative. It does not state how we
want to solve it but only what we desire. This is a clear separation of concerns:
we were not obliged to revise the solving algorithm to define this constraint.

3.2. From SLA to constraints

As can be seen in [9], SLAs commonly contain metrics related to the hardware
infrastructure the customer is guaranteed to be provided with. They define for
example a certain amount of memory, hard disk space, CPU frequency or a
certain RAID level. In addition to this first category, the technical SLA contains
also QoS-related constraints. Within the third category we capture constraints
concerning security issues, such as secure access possibilities (e.g. VPN) or the
guarantee that one VM will only be hosted on one server. The fourth category
include energy related constraints: constraint on the energy consumption for
servers, the time between VM movements, and the amount of free resources that
must be kept available in the data centre.

In order to be included in PlugdGreen the constraints need to be mapped
into rules understandable by the CP engine. The constraint can be either
implemented over pre-existing constraints in BtrPlace or using the low-level
constraints provided by the Choco library. For instance, the constraints related
to hardware metrics are usually implemented using the Fence constraint provided
by BtrPlace to restrict the VM placement to a given group of servers. In a
pre-selection process, a set of servers having a satisfying hardware is computed.
A Fence constraint is then instantiated with this set, allowing an allocation to
be performed only on this set of servers. In practice, 17 of the 23 constraints



bundled currently inside PlugdGreen were developed without relying on pre-
existing constraints in BtrPlace.

The output of PlugdGreen is also dependent on energy-related constraints.
The simplest of these constraints is MaxzServerPower: it allows the data centre
operator to specify the maximum power that a server or a group of servers can
consume. This constraint takes into account the fact that PlugdGreen does
not work with perfect information. Indeed, despite PlugdGreen aims explicitly
at reducing the energy of the overall federation of data centres, it may not be
aware, for example, that the cooling system of a specific group of servers is not
efficient, or that its power feed is weak. This information may not be included
in the power model of PlugdGreen, showing the usefulness of the constraint. In
practice, to satisfy this constraint PlugdGreen will limit the number of VMs
hosted by the servers, to keep the overall power under the threshold.

The energetic and performance costs of a VM movement itself are also consid-
ered. PlugdGreen provides the data centre operator three ways of acknowledging
those costs. The first and preselected possibility is to take the VM life-time into
account, if available. If we know in advance the remaining time that a VM will
be online before being shut down, its easy to compute whereas its worthwhile to
migrate it. We simply compare the energy saved by the VM if we move it to the
energy cost of the move, as shown in Section 3.3 However, especially in Cloud
computing, the remaining life-time of VM may not be available. The DelayBe-
tweenMove provides a second opportunity to control the migrations by stating a
minimal delay between migrations of given VMs. This simple solution can be
used whenever no information about the remaining life-time is available. Finally,
a more advanced version considers the migration as an investment that must be
worthy. This management opportunity is granted through the VMPaybackTime.
For this constraint, the data centre operator defines a mean life time for VMs,
depending on the data centre typology. This time will be used to compute if its
worthwhile to move a VM. For example, the operator can define that the average
VM life time in the overall data centre is one hour. Using the same algorithm as
described above, we can then compute if it’s worthwhile migrating the VM.

In addition to the acknowledgement of energy consumed for the movement of
VMs, a data centre operator needs to deal with the problem of rapid fluctuations
of workload. One solution is to ensure a specific amount of resources is always
available to absorb the variations. We implemented the constraints SpareNodes
and SpareCPUs to allow the operator to define the associated values as a function
of time. In this way the best trade-off between reliability and energy efficiency
is achieved. If, for instance, the historical load pattern of the data centre shows
that during night time there is only a low variation of the number of VMs but in
the time between eight and nine rapid rise of number of VMs occurs (e.g. due to
the start of the working day), the SpareNodes or SpareCPUs parameter values
are kept small during night-time and is increased before office hours.

8.8. Optimisation Objectives
In this section, we first introduce the power prediction models that estimate
the power consumption of a server. We then present two objectives implemented



as a proof of concept to optimise a data centre usage: minEnergy to reduce the
energy consumption, and minGasEmission to reduce the CO5 emission.

8.8.1. Power Consumption Prediction

In order to derive the optimisation objectives mentioned, we need to design
appropriate power consumption prediction models. In this section, we provide
models for idle and dynamic power consumption estimations. We introduce
the corresponding models for servers by breaking down into their constituent
components (e.g., processor, memory, hard disk, see Figure 3).

When a Single Allocation or a Global Optimisation is triggered, the frame-
work collects all the necessary information from the data centre management
framework, in particular the dynamic parameters. This information is passed to
PlugdGreen using the schema described in [10]. The prediction models described
in this section are then used by PlugdGreen to build an objective function,
adapted for the current configuration and state of the data centre. The built
objective function (either minEnergy or minGasEmission) is thus recomputed
and may be different for each call of PlugdGreen.

Hard Disk CPU Core
RAM E’;’;’ggﬁf:ggﬁé’lf DVFS: boolean voltage: double
: i : frequency: double
voltage: double ; architecture: enum )
o e maxeadRate: fouble transistorNumber: frequencyMin: double
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type: enum maxWriteRate: double coreLoad: double
frequency: double ’
Mainboard S
powerldle: double erver Blade
totalFreeMemory: name: String Server
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Figure 3: Server UML class diagram

Idle power. A server is in idle state when all of its constituent components are
inactive but still powered. To this end, the major contributors to the idle power
consumption of a blade server are the processor, memory, and hard disk. The
idle power consumption of a multi-core processor i is given by equation (1) where
t denotes the total number of cores, v, the total number of transistors of the
st core, I,,s and V,, the current and the voltage of the u!* transistor of the s
core, respectively.

PCPU(i) = Z ZS Ius X Vus (1)

s=1u=1

In [11], an approach is presented to model the current I,s in terms of
the voltage V,,, by taking into account the processor frequency. Hence, the
most relevant energy-related parameters are the architecture (e.g., Intel, AMD),
the number of transistors (in the order of millions), voltage as well as the



corresponding C-states® with which the processor is operating. Concerning the
memory modules, they consume power during the idle state while refreshing the
memory ranks holding stored data. The idle power consumption of a memory
module j is given by:

PRAM(j):ZSVXfuxcx‘/y2 (2)
v=1

where s, denotes the size (GB), f, indicates the frequency (MHz), and V,,
represents the voltage of the v* memory module, whereas c is a constant. In [11],
values for ¢ where derived based on the type (e.g., DDR2, DDR3) of the memory
modules. Consequently, the most relevant energy-related attributes are the size,
frequency, voltage, and type of the memory modules. All the above-mentioned
attributes are static ones and can be found within the manufacturers data sheets.
A hard disk is in idle state when neither read nor write operations take place.
Moreover, during the idle state, most of the mechanical parts of the disk are
stopped. Consequently, manufacturers provide in their data sheets the average
idle power consumption for hard disks which can be used as a best estimate.

Given a blade server s composed of processors, memory modules and hard
disks, its idle power consumption is estimated by the equation (3). I, m, and n
denote respectively the total number of processors, memory modules as well as
hard disk drives. c¢ represents the power consumption of the mainboard which
can be estimated from observation dataS.

l m n
Piaie(s) =Y Pepu(i) + Y Pram(§) + Y Pupp(k) +c (3)
i=1 j=1 k=1

Dynamic power. The dynamic power denotes the power that is consumed by a
server to carry out operations of the running VMs such as accessing the memory
or the hard disk as well as executing instructions by the processor. As in the idle
part, the major contributors to the dynamic power consumption of blade servers
are the processor, memory and hard disk. Equation (4) models the dynamic
power consumption of a multi-core i processor based on the following well known
CMOS circuit formula. ¢ denotes the total number of cores, C.s; the effective
capacitance (i.e. activity factor), f the frequency, and V' the voltage of the core.

Plpy(i) =Y Cepp(s) x f(s) x V2(s) (4)

In [12], the authors showed that the power consumption of a multi-core
processor is not the pure summation of the consumption of its constituent cores.
Consequently, the authors modelled the power consumption of the processor

5Technology enabling for a processor to choose from a set of power related saving modes.
6For the blade servers of the evaluated testbed, ¢ takes a value between 70-85 W.
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by dividing it into different levels and identified the contribution of each level
to the overall power consumption. For a processor, its frequency, voltage,
utilization rate but also its specific energy efficient mechanism such as Intel
SpeedStep [13] play a major role in the computation of the dynamic power
consumption. DDR3 memory modules have a constant power consumption (in
average 9.5 W) regardless read or write operations are carried out. Since in
cloud computing data centres, the availability of an application profile of VMs
in terms of number of accesses to the memory for read/write is challenging,
the most relevant energy-related attribute is the total available free memory
space (GB) of the system. This dynamic parameter helps at defining when a
memory access is probable: the more free memory space the system has, the less
probable will be access to the memory. Finally, the hard disk consumes power
when its mechanical as well as electrical parts are used to perform read or write
operations. Furthermore, an additional start up power is induced whenever the
disk changes its state from idle to accessing modes. As in the case of memory,
since its not possible to have a detailed profile of the application, then the most
relevant energy-related attributes for the hard disk are the read and maximum
read rates as well as write and maximum write rates all expressed as MB/s.
Those parameters help in providing guesses with respect to one of the three
states (e.g., idle, start up, accessing) the hard disk could be. Additionally, the
power to access the hard disk is in average 1.4 times greater than the one of the
idle state. Further details on the probabilistic approaches adopted for memory
and hard disk can be found in [14]. As a result, the overall power consumption
of a blade server is the summation of the P;4. and the dynamic powers of its
CPUs, RAM and HDDs.

8.8.2. Power Objectives Elaboration

Having the power consumption prediction models described in the previous
section at the disposal of PlugdGreen, we are now able to compute the power
objectives. However, using directly the power consumption prediction models at
each step of the optimisation process would be too costly in terms of computation
time and resources. Furthermore, this approach would not take advantage of the
CP, where the objective function must be stated as a constraint programming
vartable that must be minimized, and thus cannot be written as a simple
Java function. Our approach to solve this problem is the following: In a first
step, PlugdGreen groups the servers into families that share similar hardware
characteristics (e.g., processor, memory, hard disk), and similarly the VMs are
grouped into families that share similar characteristics according to the SLA
(e.g., small, medium, large). Note that such an assumption is possible since it
is common for a data centre to have families of similar equipment and because
VMs often share similar run-time characteristics as well. PlugdGreen will then
generate for each server its idle and dynamic power consumption patterns under
several usage conditions, using the VMs families to simulate the load, and store
them in two vectors o and 3. This means that the necessary values are retrieved
and stored in vectors before and not during the search process which results
in a much faster search. We can obtain the pre-computed version of the power
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consumption for the server i in family k& by using the following equation:

P
P(Sf):Xixak+Zhij><ﬁkl (5)
j=1

where ay, denotes the idle power of the family of servers k, and (§j; denotes
the power consumption of the VM [ if running on a server from family k. h;; =1
if the node s? is hosting the VM l/]L and O otherwise. X; is a variable with a
value of 1 if there is at least one VM in a server s¥, and 0 otherwise. We assume
that, if a server contains no VMs, it can be switched off by PlugdGreen and then
consumes no energy. We denote as PUFE, the Power Usage Effectiveness of the
data centre d from a federation of D data centres. The global power consumed

by this federation is computed by PlugdGreen as:

D n
P=) (PUE;x Y P(s})) (6)
d=1 i=1

To reduce energy consumption, consolidation through VM migration is a
common solution. This operation has however an energy cost that is integrated
in the power objective function of PlugdGreen. This way, PlugdGreen will not
migrate a VM if the cost of the move is too high compared to the expected
energy gain. We compute the energy needed for the migration of a VM E,;; oy (4)
based on the characteristics of the source server, the destination server and the
VM itself, as detailed in the power consumption evaluations in [15]. We also
include an energy penalty Eonorf(j) for switching on and off a server. Indeed, a
certain amount of time is needed to switch on or off a server and during this
time, no workload can be carried out despite a certain energy consumption.

As an approximation, we assume that the energetic situation in the data
centre is stable between two reconfigurations during a delay Trecons (in seconds).
At the next reconfiguration and to take into account changes in the data centre
like VM termination, PlugdGreen will recompute the power objective. Using
equation (6), PlugdGreen computes Py and Pgy¢, the power of the federation
before and after application of the reconfiguration plan, respectively. The global
energy saved by the reconfiguration plan, at federation level is therefore:

p n
Etot - (Pbef - Paft) X Treconf - Z Emove(i) - ZEOnOff(j) (7)
i=1 7j=1

Similarly, PlugdGreen is computing Qy.tq;, Which is the total quantity of
carbon emissions saved by the reconfiguration plan, by replacing “PUE” by “CUE”
in the equations. As stated at the beginning of this section, our objectives
minEnergy or minGasEmission consists of minimizing oy or Qyor, respectively.

8.4. Reducing the Solving Duration

Computing a configuration according to an objective may be time consuming
for large infrastructures as selecting a satisfying server for each running VM is

12



NP-Hard [7]. To solve a COP, the constraints (see Section 3.2) are used by the
solver to remove inconsistent variable assignments, while the power objective
variable is used to select values that are relevant to save energy. However, this
can be a very time-consuming process. To help reduce this duration, so-called
search heuristics are used to indicate to the solver the variables to focus on in
priority, and supposed good values to try first. A search heuristic is thus attached
to each objective (minEnergy or minGasEmission). The objective is to find
good solutions as soon as possible in the search tree. A search heuristic is tightly
coupled to an objective but completely independent from the stated constraints
to maintain the composability of PlugdGreen. This way, an arbitrary number
of constraints can be used with the same search heuristics. In PlugdGreen, the
heuristics are typically guiding the solver into finding values for the variables
related to the position of the VMs on the servers and the state of the servers.

For each objective, its search heuristic suggests to migrate the VMs from the
least loaded, or least energy-efficient servers, to highly-loaded and energy-efficient
servers. The algorithm is similar to the well-known Best Fit Decreasing, used for
example in [5]. The notion of efficiency depends on the objective: The PUE is
used for the minEnergy objective and the CUE is used for the minGasEmission
objective. Once the new placement for each VM is computed, the heuristics
makes the solver try to turn off unused servers.

4. Framework Evaluation

As stated before, the goal of PlugdGreen is to improve data centres energy
efficiency through placement algorithms that are easy to specialize. In this section,
we first discuss the extensibility of PlugdGreen. We then demonstrate the impact
of its specializations to reduce the power consumption or the gas emission on a
heterogeneous data centre federation running an industrial workload. We finally
evaluate its scalability within a simulator for a data centre with up to 2500
servers.

4.1. Extensibility of PlugGreen

The design of PlugdGreen allows the integration of new concerns. Each
constraint and objective is a plug-in composed by a XML Schema and a Java
implementation. A developer can then develop a new constraint or objective as
a plug-in and integrate it to PlugdGreen with an automatic and deterministic
specialization process. Contrary to methods derived from Linear Programming,
the developer must not provide a linear model for his constraint. This eases
tremendously the expertise that is required to express constraints. In practice,
it took only a few hours for an engineer to create and test a new constraint.

To demonstrate this flexibility, we developed 23 placement constraints and 2
objectives. They have been developed to match a large range of expectations
from the clients and data centre operators in terms of hardware compatibilities,
performance level, resource sharing or energy capping. PlugdGreen exposes
a core set of variables and relations to manipulate VMs and servers. In the
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case those core variables would not be sufficient to express a user’s problem,
new variables can be added to express meaningful information, and then be
linked with low-level relations to the PlugdGreen variables. These low-level
relations consist of either basic constraints in VM placement problem such as
assignment, scheduling, or counting constraints, but also arithmetic, logic and
domain constraints.

As an example, PlugdGreen does not currently support the thermal-aware
management of VMs. Current approaches [1, 2, 16] propose heuristics derived
from thermal models to estimate the impact of the VMs management on the
server temperature. To integrate a thermal model inside PlugdGreen, the
knowledge-specific information would be defined with new variables, linked to
Plugdgreen variables with arithmetic constraints. Once these links established,
the temperature variables would be available to express new concerns: for
example, capping the server temperature to disallow hotspot, or performing a
thermal load balancing to reduce the cooling costs.

4.2. Experiments on Cloud Testbed

To evaluate the practical efficiency of PlugdGreen in an environment as
realistic as possible, a trial has been set inside a private cloud with a state-of-
the-art cloud stack running two workloads derived from industrial traces.

4.2.1. Environment Setup

The cloud simulates an heterogeneous data centre federation. It is composed
of two racks (see Table 3), each embedding a HP C7000 blade enclosure. The first
data centre (DC1) has 4 BL 460c to host VMs using VMWare ESX v4.0 native
hypervisor. 3 additional blades are used to manage the cloud, to schedule the
workloads using the open-source scheduler JobScheduler”, and to run PlugdGreen.
The second data centre (DC2) has 3 BL 460c to host VMs also using VM Ware
ESX. 2 additional blades are used to manage the cloud and to monitor the
system and the energy usage of the federation using Collectd. The racks are
connected to a single LAN and a SAN device stores all the datas, including
the VMs images. For the whole duration of the experiments, we monitored the
energy consumed on every nodes running an hypervisor

Enclosure 1 Enclosure 2
Processor model Intel Xeon E5520 Intel Xeon E5540
CPU frequency 2.27GHz 2.53GHz
CPU & Cores Dual CPU - Quad core Dual CPU - Quad core
RAM 24 GB 24GB

Table 3: Characteristics of the Racks/Enclosures

"http://sourceforge.net/projects/jobscheduler/
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Plug4Green has been evaluated against 2 synthetic workloads derived from
real traces within the private cloud of a corporation in Italy®. Figure 4 depicts
a weekly load pattern. The first workload reproduces this trace, compressed
into 24 hours. The second workload focuses on a single work day (depicted
by the black frame), compressed into 12 hours. The first workload considers a
week-end with a low load and therefore more energy saving possibilities. The
second workload is more challenging since the load is higher on average.

™,

Figure 4: Schematic view on the weekly load patterns
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4.2.2. Specializing PlugjGreen to fit an heterogeneous federation

We evaluate here the practical efficiency of PlugdGreen at managing a
federation of data centres having different PUE and CUE. The experiments have
been run using different data centre configurations.

In a first experiment, we evaluate the effectiveness of the minFEnergy placement
objective using 3 scenarios. In the “No P4G” scenario, PlugdGreen is not used.
An ad-hoc heuristic deploys the VMs on servers with a load-balancing placement
objective. Idle servers are not turned off and VMs are not migrated. In the
“P4G same PUE” scenario, PlugdGreen is used and all the servers expose the
same PUE. This is equivalent to ignoring the PUE parameter. Finally, in the
“P4G different PUE” scenario, the servers in DC1 and DC2 have a PUE set to
1.5 and 2.5, respectively. PlugdGreen can then benefit from the servers in DC1
that are more energy-efficient.

Figure 5 shows the result. The savings in the total federated sites energy
increases to over 33% compared to the “No P4G” scenario, with an improvement
of over 13% due to the consideration of the different PUE efficiency. In practice,
we observed PlugdGreen allocated more VMs in the first DC which was more
energy-efficient overall with its lower PUE. During the peak of activity, we
obtained an allocation of 46 VMs in DC1 and 18 VMs in DC2.

The second experiment evaluates the effectiveness of the minGasEmission
placement objective using three scenarios similar to those used in the previous
experiment. In the “No P4G” scenario, PlugdGreen is not used. In the “P4G
same CUE” scenario, PlugdGreen is used and all the servers have the same CUE.
Finally, in the “P4G different CUE” scenario, the servers in DC1 and DC2 have
a CUE of 0.400 g/Wh and 0.250g/Wh, respectively. Figure 6 shows a reduction
of the gas emissions by 34% in the “P4G same CUE” scenario with respect to

8due to privacy issue, we cannot disclose the corporation name and the workload details.
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Figure 5: Energy consumption of two data centres with different PUE values

“No P4G” with an increase of over 9% due to the consideration of the CUE
differences. Again, the behaviour of PlugdGreen was to run more VMs on DC2,
the most efficient data centre from the emission perspective. During the peak of
activity, we obtained an allocation of 26 VMs in DC1 and 32 VMs in DC2.
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Figure 6: Energy consumption of two data centres with different CUE values

4.2.8. Specializing PlugGreen to fit the particularities of the workload

We evaluate here the practical benefits of PlugdGreen when it is specialized
to fit the workload. In practice, we measure the data centre energy consumption
depending on different variations of a set of constraints.

The first experiment evaluates the savings when PlugdGreen controls the
aggressiveness of the VM consolidation. Frequent arrival of VMs may lead to
a scheduling delay as additional servers may need to be booted on emergency
to host them. One solution consists in ensuring at all time a certain amount of
free resources (such as idle servers) in the data centre to be able to boot the
VMs faster. This number should, however, be considered carefully. A too small
value will be ineffective while a high value would augment the overall power
consumption. With PlugdGreen, this fine grain tuning is done easily through a
spareCPU constraint. A CPU is considered ”spare” when it is not associated
with any VCPU. Figure 7a shows the energy savings when the number of spare
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cores varies from 8 to 4 cores. This confirms that the number of spares resources
should be set to a minimum to improve energy efficiency. Maintaining at most 4
cores available instead of 8 allowed an extra 10% saving.
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Figure 7: Impact of constraints on the global energy consumption

The second experiment evaluates the savings when PlugdGreen controls the
frequency of the migrations. A VM migration is indeed costly in terms of energy
but also in terms of performance. It is then useful to disallow to migrate too
frequently the same VMs. With Fit4Green, this parameter is controlled easily
through a DelayBetweenMove constraint. PlugdGreen will then consider as
candidate for migration only the VMs that have been last migrated at least the
required amount of time ago. Figure 7b shows the energy saving depending on
the migration time interval. With a 30-minute timeout, PlugdGreen saved an
extra 20% of energy compared to the 1 minute timeout, because it prevented
unnecessary VM migrations.

The last experiment evaluates the savings when PlugdGreen is used to control
the resource sharing. Its objective is to assess to which extent we can improve
the achievable energy saving, when an energy relevant SLA parameter constraint
is relaxed with respects to its standard value. Based on observations from the
testbed, MazVCPUperCore constraint has been identified as the most important
one of this category. Figure 7c demonstrates the impact of this parameter on
the overall energy consumption. If we relax the constraint up to 2.5 VCPU/core,
we reduce the energy consumption by up to 45%. This is not a surprise as with
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a factor of 2.5 its possible to consolidate twice as much VMs on a server than
with factor of 1.2. This means that PlugdGreen used only one half of the servers
to run the workload and can switch off the other half.

4.3. Scalability of PlugGreen

Placing VMs on servers with regard to their resource requirements is a NP-
Hard problem. The scalability of PlugdGreen is then determined by the size of
the configurations (number of VMs and servers) and their associated constraints
that PlugdGreen is able to solve in a reasonable time. To evaluate this scalability,
we generate 5 sets of configurations that are composed of 500 up to 2,500 servers.
Each set is composed of 50 configurations, with different VM templates and
different initial placements. We run PlugdGreen on each configuration with
the constraints evaluated in Section 4. The solving process stops once the first
solution is computed. We then analyse the solving process and the estimated
energy savings.

To provide a realistic evaluation with simulation data, configurations are
generated from the testbed described in Section 4.2.1 and common practices.
Servers are identical to those used in the cloud testbed with an equal reparti-
tion between the models used in the two enclosures. Each VM instantiates a
template randomly selected among the three available in the testbed. These
templates, namely m1.small,m1.large,m1.zlarge mimics standard EC2 template®
with regards to their allocated amount of RAM and VCPU. The amount of VMs
in each configuration equals five times the number of servers, according to a
consolidation ratio observed in industry [17]. Finally, the initial VM placement
is computed randomly but ensures that their SLA is initially satisfied.

Figures 8, 9 and 10 depict the results. “P4G” denotes the usage of PlugdGreen
without any additional constraints. The “+spare” label denotes the addition of
one SpareCPUs constraint to keep 1% of all the PCPUs directly available. The
“4vcpu” label denotes the addition of a MaxzVCPUperCore constraint to restrict
to at most 2, the number of VCPU attached to a single PCPU. Finally, the
“+delay” label denotes the addition of a DelayBetweenMove constraint to prevent
the migration of any VMs migrated less than 30 minutes ago. We consider for
the simulation that 5% of the VMs, randomly selected, are in this state.

Figure 8 shows that the solving time increases exponentially with regard to
the data centre size. This is expected as the problem addressed by PlugdGreen
is NP-hard. Without additional constraints, 30 seconds are required to compute
an improved configuration for a data centre with 1,000 servers. Doubling the
size of the data centre requires 4 times more time. We however observe that
Plug4Green is able to compute an improved configuration in one minute in a data
centre with up to 1,500 servers running 7,500 VMs. At this scale, we observe
that the addition of constraints does not alter significantly the solving process.
Above that limit, the solving time gets more dependent on the constraints. The
DelayBetweenMove constraint reduces the computation time as it reduces the

9https://aws.amazon.com/ec2/instance-types/
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Figure 8: Solving duration to compute the improved configurations

number of VMs that have to be considered by PlugdGreen in each time slot.
However, the SpareCPUs and the MaxVCP UperCore constraints increase the
computation time by 25% each. With a 1,500 servers, this adds a 15 seconds
overhead. With 2,500 servers, the overhead equals one minute. This overhead is
explained by the constraints implementation: each of these constraints extends
BtrPlace to expose the mapping of the VCPUs to the PCPUs. This extension
injects one bin packing [18] constraint into the CP solver that cannot scale linearly
with the data centre size. By default extensions of PlugdGreen, even identical,
are not shareable. This includes a redundancy that alters the performance.
Providing a sharing mechanism for the extensions would lower this overhead.
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Figure 9: Energy consumption of the improved configurations

Figure 9 shows the energy consumption of the improved configurations. This
value was computed using the power consumption prediction model. We first
observe that the SpareCPUs and the MaxVCPUperCore constraints do not
alter the quality of the improved configurations. For the SpareCPUs constraint,
Plug4Green was able to keep free the requested amount of PCPU capacity without
having to turn on additional servers. We also observe that the DelayBetweenMove
constraint is reducing the saving opportunities by 10%. This is explained by
the particular setting of this experiment: the VMs that are not allowed to be
migrated due to the constraint have been selected randomly. The selected VMs
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are spread over numerous servers which prevented PlugdGreen to turn them off.

Figure 10 shows the number of migrations to execute to reach the improved
configurations. We observe the SpareCPUs and the MaxVCPUperCore con-
straints did not alter the number of migrations. This shows PlugdGreen was able
to consider these constraints without having to re-arrange additional VMs. The
DelayBetweenMove constraint reduces the amount of migrations by 5% which is
the number of VMs considered by the constraint.
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Figure 10: Number of migrations to reach the improved configurations

5. Related Work

This section discusses recent advances in the area of energy-aware frameworks
for data centres. The literature relevant to our work can be divided into three
groups: (i) heuristic-based approaches, (ii) the existing flexible and extensible
frameworks, and (iii) the power consumption prediction models.

5.1. Heuristic Based Approaches

The problem of consolidating and rearranging the allocation of VMs in a data
centre in an energy efficient manner is described in [19]. The authors propose
heuristics to compute for each VM to be moved, the appropriate server that
leads to minimizing the overall data centre power consumption. This is similar
to the First Fit Decreasing algorithm which has been used in previous works
[20, 21, 3], with the addition of power-awareness for choosing the server. In [5],
the authors proposed the Modified Best Fit Decreasing, which will allocate a
new VM to an active physical machine that would take the minimum increase of
power consumption. [7] also proposes algorithms for VM reconfiguration and
(re)allocation. The main advantage of heuristic based methods is that they are
fast and easy to configure. However, in many situations they cannot lead to the
optimal solution if the data centre is heterogeneous. Furthermore they will be
hard to extend if new uses cases appear in the data centre. We propose a larger
framework that can cope with an arbitrary number of constraints user-defined
which ensure the flexibility of the framework and its extensibility regarding new
constraints that may come in the future.
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5.2. Extensible and flexible frameworks

A few flexible and extensible frameworks for VM allocation have been pro-
posed recently. For example, BtrPlace [8] is a CP-based flexible consolidation
manager. As already detailed in Section 3.1, PlugdGreen leverages on Btr-
place [7, 22]. BtrPlace does not take into consideration energy related problems
and does not provide an operator with the opportunity of setting optimization
objectives. In contrast to BtrPlace, PlugdGreen directly addresses energy con-
sumption problem. In this work, PlugdGreen proved the practical benefits of
flexibility to address energy related problems. This required numerous exten-
sions: the development of a power model and different model extensions, two
objectives with their associated heuristics, 7 energy-related constraints, and a
domain-specific language to directly exhibit energy concerns and metrics such as
PUE, CUE and Watts, to the end-users.

Similar modular consolidation manager adopting CP paradigm is presented
in [23]. The authors ensure high availability for VM placement by guaranteeing
at any time a certain number of vacant servers to allocate VMs with regards to
placement constraints. The authors ensure high availability for VM placement
by guaranteeing at any time a certain number of vacant servers to allocate VMs
with regards to placement constraints. The scalability is demonstrated with 32
servers and 128 VMs only.

In [24], the authors propose an hybrid approach based on a Business Rules
Management System (BRMS) and CP to manage VMs. The BRMS monitors
and analyses the servers state at a period of time to detect overloaded servers
and bottlenecks. Once a problem is identified the BRMS models its instance and
sends it to the CP solver. A user can express constraints through the BRMS
but the resulting specialization cannot be deterministic contrary to PlugdGreen.
In contrast to our manager, both the systems presented in [23] and [24] are not
addressing energy-efficiency problems.

Some preliminary theoretical and practical aspects of PlugdGreen were
investigated in [25]. Energy-aware VM allocation was the primary goal while
this work focuses on flexibility. For this purpose, we created seven new SLA
constraints, notably energy-oriented, and a new power objective model has
been included. Three new heuristics has been developed, allowing finding good
solutions quickly. A complete experimentation has been carried out with new
prototype, evaluating the impact of several popular SLA constraints on the
energy saving. In this work, we demonstrate an energy saving of 33% while it
was 18% in federated cloud data centre experiment in [25], due to new energy-
aware constraints and heuristics. The scalability of the framework has been also
greatly improved. PlugdGreen is about 30 to 40 times faster which makes it
capable of managing larger data-centres.

Nefeli [26] is a cloud gateway that places VMs with regard to user preferences
called "hints”. Nefeli expects that the users are aware of the role each VM
plays in the infrastructure and communicate this information to the cloud as a
hint. The VM placement is computed using simulated annealing. A hint is then
implemented as a scoring function that evaluates the quality of the placement
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with respect to its concern. This approach makes Nefeli flexible: Nefely can
be extended by programming new hints. As a difference with PlugdGreen,
the approach does not separate the model from its resolution method. The
specialization made by the hints is also not composable as each score is, by
nature, relative to the others. Despite the authors discuss some energy-related
hints, their system as a whole does not make a special emphasize on energy
efficiency. Finally, Nefely has not been evaluated in terms of scalability.

5.3. Server Power Models

In [27], the authors propose a model to predict the average power consumption
of a server regardless of its utilisation. The two main benefits are the followings:
(i) it is simple to compute and no dynamic information is required, and (ii) it
is similar to the method of estimating a system’s power consumption based on
the manufacturer’s specifications. However, it provides very rough predictions
especially for heterogeneous software and hardware environments. In [4], a linear
model estimates the power consumption according to the server’s CPU utilisation.
This approach is not suitable for not CPU-intensive workloads. The model in [28]
follows a similar approach while taking into account the utilisation of the hard
disk. Authors in [29] extend the CPU and disk utilisation model by looking
at performance counters of the system such as the amount of instruction-level
parallelism, the activity of the cache, or the utilisation of the floating-point unit.
However, performance counters are accessed differently on each processor type.
As a matter of fact, this model is not usable across heterogeneous systems. In
contrast to the above-mentioned models, which provide one linear model for the
whole server, our approach aggregates different models for different components
based on their behaviour. In addition, our approach does not need any calibration
phase. Consequently, our models are suitable not only for homogeneous, but
also for heterogeneous environments like cloud data centres.

6. Conclusion

Trends in application design, workload volatility, but also hardware hetero-
geneity make each data centre unique. However, the ad-hoc design of current
energy-aware VM managers prevent them to take these particularities into
account to provide additional savings. In this paper, we presented a flexible
energy-aware VM manager named PlugdGreen. Thanks to Constraint Program-
ming, PlugdGreen can be easily specialized to support various combinations of
SLAs, power models and energy policies. Its flexibility has been verified through
the implementation of 23 meaningful SLAs and 2 energy policies. Its practical
effectiveness has been evaluated on an industrial testbed. While the default
version of PlugdGreen reduced the power consumption and the gas emission by
27% and 23% respectively, its specialization to fit the hardware heterogeneity
improved the saving by up to 34%. Furthermore, additional specializations to
fit the workload particularities reduced the power consumption by 9% to 50%.
Finally, scalability experiments on simulated data have shown that PlugdGreen
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is able to compute an improved placement for 7,500 VMs running on 1,500
servers in a minute, while respecting their SLA.

In future works, we will focus on data centres powered by renewable energies.
This requires indeed a new look on the energy efficient management of VMs as
the nature and the availability of the energy is varying over time.
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