
Online Management of Jobs in Clusters using Virtual Machines

Fabien Hermenier

Cluster computing is an attractive solution to meet
the growing computational requirements of scientific
applications. In this setting, a user organizes a job
as a collection of tasks that each requires a finite
amount of resources for a bounded amount of time.
A scheduling algorithm is responsible of selecting the
jobs to execute on the cluster by finding, for each task
composing the jobs, a node with a sufficient amount
of free resources. Static scheduling algorithms allo-
cate each task to a node and a constant amount of
resources for all the duration of the job. Such strate-
gies lead to a waste of resources and a non-optimal
schedule of the jobs as each task does not use all of
the allocated resources at all times. On the opposite,
dynamic scheduling algorithms manipulate in live the
state of the jobs using preemption and the location of
their tasks using process migration. These algorithms
provide a finer use of resources by allocating them
according to the current demand instead of the users
estimate. In practice, dynamic scheduling strategies
are hard to deploy on clusters. First, the actions that
manipulate the tasks in live are tedious to implement
in a non-intrusive way. Second, their executions are
time and resource consuming and misusing them lead
to a high computational overhead. Finally, each clus-
ter has its own architecture and some specific objec-
tives or constraints that may not fit with the available
scheduling strategies.

In this thesis, we investigate to ease the develop-
ment and the use of dynamic scheduling strategies.
First we propose to use virtual machines (VMs) to
execute the jobs in their legacy environment. In
addition, virtualization brings the necessary actions
to manipulate VMs as dynamic scheduling strategies
manipulate tasks: live migration allows to relocate
a VM that embeds a task with a negligible down-
time, while the suspend-to-disk and the resume ac-
tions provide jobs preemption. To ease the devel-
opment of specific dynamic scheduling strategies, we
propose to use constraint programming (CP), a flexi-
ble approach to model and solve combinatorial prob-
lems. With this approach, the developer only focuses
on modelling its problem by stating the constraints
(logical relations) that must be satisfied by the so-
lutions. Hence, we have developed a constraint pro-

gramming model for a core dynamic scheduling prob-
lem as well as additional composable constraints to
specify the strategy by restricting the state or the
location of VMs. Finally, we introduce the concept
of dynamic reconfiguration, a generic method to per-
form the transition between the current schedule of
the VMs and the new computed one. Relying on a
model that estimates the duration and the impact on
performance of each action, our module, also based
on CP plans the actions to ensure their feasibility and
to minimize the total duration of their execution.

We have validated our approach with the imple-
mentation of a prototype named Entropy1 which was
used to implement two use cases. The first pro-
vides dynamic consolidation by packing all the run-
ning VMs on the minimum number of nodes while
satisfying their CPU and memory resources needs.
This strategy reduces the energy consumption of the
clusters when unused nodes are turned off. Our sec-
ond use case reduces the complexity of developing dy-
namic scheduling strategy. Using the dynamic recon-
figuration, the developer only provides an algorithm
to select the jobs to run while the reconfiguration
module finds a host for each selected VM and pro-
vides an efficient transition to reach the new sched-
ule.

We have evaluated Entropy through several exper-
iments using both simulations with up to 200 nodes
and 400 VMs and clusters with up to 35 nodes and
70 VMs. We have observed that our approach for dy-
namic reconfiguration reduces by up to 70% the dura-
tion of a reconfiguration as compared to the heuristic
First Fit Decrease (FFD). This has led to a reactive
system that quickly fixes non-optimal schedules and
provides an efficient use of resources for each strategy
we have developed. For dynamic consolidation, we
have compared our implementation with the common
heuristic FFD. Our solution performs twice as much
reconfigurations and uses half as much resources to
execute the same workload. For our second strategy,
we have developed a sample scheduling algorithm,
similar to First Come, First Serve but which exe-
cutes a workload of 11 jobs 40% faster.

1http://entropy.gforge.inria.fr


