Higher SLA Satisfaction in Datacenters with Continuous Placement Constraints

Huynh Tu Dang hdang@polytech.unice.fr Fabien Hermenier aunice.fr

spread the replicas

performance guarantee

low latency

reconfiguration algorithm

SLA: spread(VM1, VM2)

reconfiguration algorithm

SLA: spread(VM1, VM2)

sys-admin query: offline(N1)

reconfiguration algorithm

with discrete restrictions

SLA: spread(VM1, VM2)

sys-admin query: offline(N1)

Discrete restriction is NOT enough

not an unpredictable situation, an algorithmic issue

Evaluating the reliability of discrete placement constraints

- simulate a 256-server datacenter
- running 350 HA webapp (5,200 VMs)
- BtrPlace as the reconfiguration algorithm
- 4 reconfiguration scenarios that mimic industrial use case
- 100 instances per scenario

Studied

constraints

spread

replicas on distinct servers for fault tolerance

among

DBs on a same edge-switch for a fast synchronisation.

splitAmong

webapp split over 2 clusters for disaster recovery

max0nline

240 nodes online at maximum to fit licensing policy

singleResource Capacity

keep resource for hypervisor management operations

scenario

vertical elasticity

scenario

vertical elasticity

Scenario horizontal elasticity

Scenarion Scenarion Scenario S

SCENAL Boot storm

scenario server failure

Migrations lead to unanticipated placements

Scanacia	Violated SLAs	Actions			
Scenario		VM Boot	Migrate	Node Boot	Node Shutdown
Vertical Elasticity	40.72	0%	99.99%	0.005%	0.005%
Horizontal Elasticity	0.19	99.82%	0.18%	2.82%	0%
Server Failure	29.56	61.29%	35.89%	2.82%	0%
Boot Storm	0.35	98.57%	1.43%	0%	0%

Migrations tend to violate relative placement constraints

Trading unreliable discrete constraints ...

we addressed an assignment problem

... for safe continuous constraints

we must address a scheduling problem

Continuous placement consett aceth

	Variables related to VM Management		
c^{host}	Current host of the VM (constant)		
c^{men}, c^{cpu}	Current amount of memory and uCPU resources		
	allocated to the VM (constant)		
c^{ed}	Time the VM may leave its current host		
d^{host}	Next host of the VM		
d^{men}, d^{cpu}	Next amount of memory and uCPU resources to		
	allocate to the VM		
d^{st}	Time the VM arrives on its next host		
	Variables related to server management		
n^q	Next state of the server		
	Variables related to action management		
(a^{st}, a^{ed})	Times an action starts and ends, respectively		

stay on a same partition by the end of the reconfiguration process

stay on a same partition by the end of the reconfiguration process

stay on a same partition by the end of the reconfiguration process

Disallow movements between partitions

- basic knowledge of a reconfiguration process
- still an assignment problem

Disallow movements between partitions

- basic knowledge of a reconfiguration process
- still an assignment problem

continuous spread

```
discrete spread(VM[1,2]) ::= allDifferent(d_1^{host}, d_2^{host})
```

```
continuous spread(VM[1,2]) ::= allDifferent(d_1^{host}, d_2^{host}) \land d_1^{host} = c_2^{host} \implies a_1^{start} \ge a_2^{end} \land d_2^{host} = c_1^{host} \implies a_2^{start} \ge a_1^{end}
```

Disallow temporary overlapping

- require to know this may happen
- scheduling 101

continuous maxOnline

discrete maxOnline(N[1..10], 7)::=
$$\sum_{i=1}^{10} n_i^q \leq 7$$

detailed knowledge of a reconfiguration process

scheduling 201

harder to imagine, model & implement

$$\forall i \in [1, 10], \quad n_i^{on} = \begin{cases} 0 & \text{if } n_i^q = 1 \\ a_i^{start} & \text{otherwise} \end{cases}$$

$$n_i^{off} = \begin{cases} max(T) & \text{if } n_i^q = 0\\ a_i^{end} & \text{otherwise} \end{cases}$$

$$\forall t \in T, card(\{i | n_i^{on} \ge t \land n_i^{off}\}) \le 7$$

Performance overhead

Performance overhead

Conclusions

- discrete restriction is not enough
- continuous restriction is a solution
- a different view on the problem
- challenging, but still possible to implement

Puture Work

- a broader range of constraints and objectives
- reducing performance overhead
 - static analysis to detect un-necessary continuous constraints
 - controlled relaxation to handle hard situations

http://btrp.inria.fr

open source, 20+ placement constraints, demo, tutorials, everything for reproducibility