
Consolidation dynamique d’applications
Web haute disponibilité

Fabien Hermenier1, Julia Lawall2, Jean-Marc Menaud1, Gilles Muller3

1 ASCOLA Mines de Nantes, INRIA, LINA. prenom.nom@mines-nantes.fr
2 DIKU, Université de Copenhague. julia@diku.dk
3 INRIA/LIP6-Régal. gilles.muller@lip6.fr

mailto:prenom.nom@mines-nantes.fr
mailto:prenom.nom@mines-nantes.fr
mailto:julia@diku.dk
mailto:julia@diku.dk
mailto:gilles.muller@lip6.fr
mailto:gilles.muller@lip6.fr

Main

Application domain : Highly Available Web Applications
running on virtualized datacenter

Goal : Dynamic consolidation to optimize datacenter
ressource usage

Contribution : Plasma, a dynamic consolidation manager,
that can be configured to take into account resource and
placement constraints for HA application

Virtualized datacenter

Virtualized highly-available Web application

Dynamic consolidation meets high-availability

System administrator wants
to stack VMs on nodes to improve resource usage

an autonomous management of the VMs

Application administrator wants its VMs placed wrt. :
their resource requirements

fault tolerance to hardware failure for replicated services

a network latency compatible with the synchronization protocol

The challenge
Some problems

multiple specific placement constraints

concurrent/overlapping constraints

constraints expressed by non-expert users

One proposition
easy specification of placement constraints with declarative scripts

extensible autonomous VM manager, specialized by the constraints

Datacenter description
// Infrastructure
$R1 = {WN1 , WN2 , WN3 , WN4 };
$R2 = WN [5..8];
$R3 = WN [9..11] + {SN1 };

// Classes of latency
$small = {$R3 };
$medium = $R [1..3];

// Constraints
ban ($ALL_VMS , {SN1 });
ban ($ALL_VMS , {WN5 });
fence ($A1 , $R2 + $R3);

Application description
// The 3 tiers
$T1 = {VM1 , VM2 , VM3 };
$T2 = VM [4..7];
$T3 = VM [8..9];

// Fault tolerance to hw. failures
spread($T1);
spread($T2);
spread($T3);

// Efficient synchronization
latency ($T3 , $medium);

Constraints
ban({VM1, VM2}, {N1, N2})

prevents a set of VMs from being hosted on a given set of nodes

fence({VM1, VM2}, {N1, N2})
forces a set of VMs to be hosted on a set of nodes

spread({VM1, VM2})
ensures that the specified VMs are never hosted on the same node
at the same time

latency({VM1, VM2}, {{N1, N2}, {N3, N4}})
forces a set of VMs to be hosted on a single group of nodes.

Control loop of Plasma

Sample loop iteration - Monitor

Retrieves the current state of the datacenter

Sample loop iteration - Provisioning

Estimates the needs of the applications

Sample loop iteration - Plan
Current configuration is not viable :

VM4 must be running

VM5 does not have access to sufficient
uCPU resource

WN5 should not host any VMs

Reconfiguration: actions on VMs and nodes to reach a viable
configuration

migration, suspend, resume, shutdown, startup, . . .

Sample loop iteration - Plan
Compute a viable placement for the VMs

Schedule the actions

Compute a viable placement
The approach : constraint programming

generation of a core model
placement constraints are translated into "CP constraints"

Constraint Programming
Pro

high-level standardized constraints, portability of a model
good expressivity
deterministic composition
deterministic solving process

Cons

hard to develop efficient custom constraints
exact solving duration
bad model leads to bad performance

Evaluation

RUBiS : The three tiers of each instance of RUBiS are
deployed as 7 VMs (2,3,2)

3 applications

21 nodes

RUBiS Benchmark : Load spikes

Improvement wrt. static consolidation (14.7% vs. 17.7%)

About 12 reconfigurations (29 secs) per execution

Longest reconfiguration: 10 migrations in 89 seconds

21 8 8

RUBiS Benchmark : external events

Hidden side effects on Entropy, not the sys-admin

Scalability evaluation
Simulated instances

200 nodes in 4 racks and 2 partitions
400 VMs: 20 HA Web application (20 VMs each)
initial placement and uCPU usage computed pseudo-randomly
1% of failed nodes

Consolidation scenario

RP-Core without the application placement constraints,
RP-HA with the application constraints

Impact of the global uCPU demand

 100

 200

 300

 400

 500

 600

 700

 800

 900

50% 55% 60% 65% 70% 75% 80%

C
os

t o
f t

he
 p

la
n

Global uCPU load

RP-HA
RP-core

 0

 2

 4

 6

 8

 10

50% 55% 60% 65% 70% 75% 80%

Ti
m

e
in

 s
ec

on
ds

Global uCPU load

RP-HA
RP-core

Impact of placement constraints is not significant

Impact of the problem size
In practice

place 1117 candidates VMs on 1980 nodes with 600 spread +
200 latency

schedule 475 actions

Conclusion
Plasma

configurable consolidation manager through scripts

scalable to datacenter with up to 2000 nodes/ 4000 VMs

placement constraints do not impact the solving process

Futures works

new placement constraints for new concerns (currently 10 constraints)

improvment of the scalability using partitioning (done)

soft placement constraints with penalty cost.

Entropy

an open-source project: http://entropy.gforge.inria.fr

some publications: a Phd. thesis, VEE’09, CPAIOR’10,
VTDC’10, XHPC’06, JFPC’10, CFSE[6,7,8]

some industry partners: DGFiP, Orange Labs, Bull, etc.

strong partnership with the Constraint team

2 awards

http://entropy.gforge.inria.fr
http://entropy.gforge.inria.fr

