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ABSTRACT 
Data centres are powerful ICT facilities which constantly evolve 
in size, complexity, and power consumption. At the same time 
users’ and operators’ requirements become more and more 
complex. However, existing data centre frameworks do not 
typically take energy consumption into account as a key 
parameter of the data centre’s configuration. To lower the power 
consumption while fulfilling performance requirements we 
propose a flexible and energy-aware framework for the 
(re)allocation of virtual machines in a data centre. The framework, 
being independent from the data centre management system, 
computes and enacts the best possible placement of virtual 
machines based on constraints expressed through service level 
agreements. The framework’s flexibility is achieved by 
decoupling the expressed constraints from the algorithms using 
the Constraint Programming (CP) paradigm and programming 
language, basing ourselves on a cluster management library called 
Entropy. Finally, the experimental and simulation results 
demonstrate the effectiveness of this approach in achieving the 
pursued energy optimization goals. 

Categories and Subject Descriptors 
D.4.7 [Organization and Design]: Distributed systems 

General Terms 
Algorithms, Design, Performance, Experimentation. 

Keywords 
Constraint Programming, Cloud Computing, Data Centre, 
Resource Management, Energy Efficiency, Virtualization, Service 
Level Agreement. 

1. INTRODUCTION 
Data centres are ICT facilities aimed at information processing 
and computing/telecommunication equipment hosting purposes 
for scientific and/or business customers. Until recently, data 
centre operation management has been entirely focused on 

improving metrics like performance, reliability, and service 
availability. However, due to the rise of service demands, data 
centres evolve in complexity and size. This and the continuous 
increase of energy cost have prompted the ICT community to add 
energy efficiency as a new key metric for improving data centres 
facilities. This trend was further boosted by the acknowledgement 
that the ICT sector’s carbon emissions are increasing faster than in 
any other domain [1]. Therefore researchers and IT companies 
have been solicited to find energy-aware strategies for the 
operation of data centres [2]. 

To tackle this problem, a number of energy-aware approaches 
have been recently proposed in the literature and research projects 
like e.g. workload consolidation [3][5], optimal placement of 
workload [6], scheduling of applications [1][7], detection of more 
power efficient servers [8], and the reduction of power 
consumption by cooling systems [4]. 

It should be noted, however, that most of the energy-aware 
approaches and resource management algorithms for data centres 
consider only specific research problems and integrate typical 
constraints not taking some important factors into account: 

• Data centres have complex and quickly changing 
configurations; 

• Data centres are not homogeneous in terms of 
performance, management capabilities, and energy 
efficiency; 

• Data centres must comply with a number of users’ and 
operators’ requirements. 

Due to the growing number of constraints and their complexity we 
need to separate them from the resource management algorithm(s) 
to secure the two-folded objective: 

• Being able to add or modify a constraint without 
changing the algorithms 

• Being able to test and activate a new algorithm without 
having to re-implement every constraint within it. 

In this paper we propose and discuss a flexible energy-aware 
framework to address the problem of energy-aware 
allocation/consolidation of Virtual Machines (VMs) in a cloud 
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data centre. The core element of the framework is the optimizer 
which is able to deal with (1) Service Level Agreement (SLA) 
requirements, (2) different data centres interconnected in a 
federation, each with their own characteristics, as well as (3) two 
different end objectives, namely minimizing energy consumption 
or CO2 emissions. 
This framework is developed and tested within the FIT4Green 
project [23], funded by the Commission of the European Union, 
whose main goal is reducing the direct energy consumption of 
ICT resources of a data centre by 20%. In practice, it relies on 
Constraint Programming (CP) paradigm and the Entropy open 
source library [13] to compute the energy-aware placement of 
VMs. This approach enables the adaptation of new constraints in a 
flexible manner (see Figure 1) without redesigning the underlying 
algorithm. 

Constraints:

Generic Algorithm A Generic Algorithm B

XML file

<Read> <Read>

 
Figure 1. Constraint programming: The reuse of constraints 
in the algorithms and vice versa. 
The CP paradigm provides a domain specific language to express 
the constraints. In our case it will be designed specifically for 
expressing data centre constraints. By using this language we can 
achieve the important goal of separating two different realms: (1) 
The realm of the data centre domain specific knowledge, 
expressed in the constraints, and (2) the realm of the optimization 
knowledge, expressed in the algorithms.  

The optimizer aims at computing a configuration; an assignment 
of the VMs to the nodes; that minimizes the overall energy 
consumption of a federation of data centres while satisfying the 
different SLAs. In practice, the optimizer uses a power objective 
model to estimate the energy consumption of a configuration and 
extends Entropy, a flexible consolidation manager based on 
Constraint Programming, to compute the optimized 
configurations. 
This paper is organized as follows: Section 2 introduces related 
work on the subject. Section 3 will present the proposed software 
architecture which includes the power objective model, heuristics 
search, and the translation of the SLA into constraints. The 
experimental results obtained in a cloud data centre testbed within 
Hewlett Packard premises as well as complementary scalability 
evaluation will be discussed in Section 4. Finally, we conclude the 
paper in Section 5 and discuss our future work in Section 6 . 

2. RELATED WORK 
In this section we briefly review recent middleware and 
frameworks for SLAs translation into constraints and heuristic-
based approaches. Besides, we overview some work based on the 
CP paradigm, aimed at power saving in data centres. 

2.1 SLA CONSTRAINTS 
SLAs are referred to as the textual contract signed by a costumer 
and a service provider that guarantee a certain Quality of Service 
(QoS). In the context of data centre services these encompass, 
among other terms, hardware related descriptions, performance 
related metrics and availability guarantees as well as prizes and 
penalties. Besides the textual document written in natural 
language, SLAs are nowadays more and more coped with in a 
machine readable manner. Reasons for this can be seen in the 
increase of complexity as well as, driven by the development of 
agent based technologies, a much higher automation of the 
bargaining process.  
However, one downside of this evolution is the rise of a set of 
highly heterogeneous technologies and standards. XML schemas, 
RDF and other ontological languages have been defined to be 
used in the context of all parts of the SLA life-cycle. For 
monitoring and billing, several middleware (e.g. Globus Toolkit, 
Unicore) and resource manager (e.g. PBSPRO, Torque, Maui) 
have been developed over the last decades. Furthermore 
frameworks capturing the whole SLA lifecyle (e.g. BrEIN, 
SLA@SOI, NextGrid SLA Framework) were created all 
implementing SLA capabilities in their own way. In order to be in 
the broadest sense platform independent with our approach, we 
therefore have to find a solution coping with this heterogeneity.  

2.2 SEARCH HEURISTICS 
The problem of consolidating and rearranging the allocation of 
virtual machines in a datacenter in an energy efficient manner is 
described in [15]. It is known to be a NP-hard problem [16] with a 
large solution space. Even if one suppresses any constraints from 
the problem, the size of the solution space is equal to the number 
of VMs to the power of involved servers, which is a huge number 
leading to a combinatorial explosion. For example, if the number 
of Servers is 103 and the number of VMs is 104, then the solution 
space without considering any constraints is 107. 

In the heuristics proposed in [15], for each VM to be moved we 
find the appropriate server that leads to minimize the current 
overall power consumption of a data centre. This is similar to the 
First Fit Decreasing (FFD) algorithm which has been used in 
previous works [17][18][19], with the addition of power-
awareness for choosing the server. While these types of heuristics 
are fast, in many situations they cannot lead to the optimal 
solution, unless the data centre is homogeneous. The heuristics are 
searching a solution by finding a local optimum for each VM, 
which is known to not always lead to a global optimum for the 
datacenter.  

2.3 CP-BASED FRAMEWORKS 
The framework presented in [20] addresses the Service 
Consolidation Problem (SCP) in a data centre using the CP 
approach. The rule-based constraints are assessed by the Comet 
programming language. This framework, however, focuses on the 
experimental evaluation of time necessary to find a feasible 
solution using CP and Integer Linear Programming (ILP) 
approaches. The obtained results show that the CP paradigm is 
more effective to find a solution for a large number of constraints 
and instances with respect to time. 

In [13], CP is applied to solve the bin repacking scheduling 
problem. The main idea of this work is to schedule the transitions 
of VMs considering both placement constraints and resource 
requirements. In contrast to [13], we allow a user/operator to 
derive automatically the constraints starting from existing SLA 
requirements. Furthermore, the objective of saving energy is 



stated explicitly in the model used by our framework, by using a 
runtime simulation and evaluation of the energy consumption for 
every component of a data centre. 

CP-based approaches were also proposed to solve the data 
migration [21] and load rebalancing [22] problems. However, all 
the listed works model the specific constraints directly.  
The usage of constraint programming technology for SLA 
negotiation and validation has recently been investigated in a 
variety of approaches. The concurrent constraint Pi-calculus [11] 
provides mechanisms to negotiate and validate contracts by 
extending the nominal process calculi, for instance. Another 
approach was introduced by [10] extending the soft concurrent 
constraint language in order to facilitate SLA negotiation. 
However, the focus of all research is the negotiation process.  

3. FRAMEWORK DESIGN 
In this section, we first describe the global design of the 
framework. We then present the translation of SLAs into 
constraints, followed by the description of the power objective 
model and discuss about the heuristics we use to increase the 
scalability of our framework and the quality of the computed 
configurations. 

The optimizer based on the CP engine has, in our case, several 
inputs: 

• The complete current data centre configuration. 
• A number of constraints, described in Section 3.2. 
• An objective function - in our case it is called the Power 

Objective, described in sub-section 3.3. 
• A number of Search Heuristics, described in sub-section 3.4. 

 

Optimizer
CP Engine

Current DC configuration

Power
objective

Resource 
Constraints

Search 
heuristics

VM 
reallocation

Technical SLA
XML

Placement 
Constraints

XML files Java

Additional 
Placement 

Constraint XML

Translate to

Translate to

Read

 
Figure 2. Framework architecture. 
In the following, we outline the various input elements. 

3.1 FRAMEWORK OVERVIEW 
The framework extends the Entropy consolidation manager to 
compute an energy-efficient reconfiguration plan while Entropy 
itself is not energy-aware. It relies on the VM Repacking 
Scheduling Problem (VRSP), an abstract reconfiguration 
algorithm modeling the current memory and CPU demand of the 
VMs, the server's state and the future placement of the VMs. The 
VRSP can then be specialized to fit the datacenters and the VMs 
specificities. 

The flexibility of Entropy comes from its usage of CP [24] to 
compute the new configuration and the reconfiguration plan. CP 
allows modeling and solving combinatorial problems where the 

problem is modeled by stating constraints (logical relations) that 
must be satisfied by its solution. Given sufficient time, the CP 
solving algorithm is guaranteed to determine a globally optimal 
solution, if one exists. The solving algorithm is independent of the 
constraints composing the problem and the order in which they 
are provided. This enables the framework to handle both the 
placement constraints and a power model independent from each 
other. In practice, Entropy embeds the CP solver Choco [25]. 

Figure 2 depicts the composition mechanism of the framework. 
Each call to the framework leads to 1) the generation of one 
Entropy VRSP based on the current configuration, 2) the 
translation and the injection of the external constraints, 3) the 
insertion of the power model, and 4) the insertion of the heuristics 
to guide the solver efficiently to a solution providing an optimized 
energy usage. 

A timeout can be provided to Entropy to make it stop solving after 
a given time. When no timeout is specified, Entropy computes and 
returns the reconfiguration plan that lead to the best solutions 
according to the power model and the placement constraints. 
Otherwise, it returns the best solution computed so far. 

3.2 SLA CONSTRAINTS 
FIT4Green is implemented as a plug-in to extend the existing 
management framework. Thus it does not cope with SLA 
creation, bargaining, execution and validation per se. However, in 
order to not violate the SLAs during the optimization process, 
information need to be injected to the model. Thus, in our 
approach the aforementioned problem of technological diversity 
of different management frameworks needed to be dealt with, too. 
The solution was to define an XML schema on a low, technical 
level of abstraction. This in turn is being used by the DC operator 
to supply the needed constraints in a both human and machine 
readable format. 

3.2.1 SLA Schema Creation 
As a starting point (see Figure 3) for the definition of the schema 
we have used the findings of [9] where the authors have analyzed 
nearly fifty SLAs and extracted common metrics.  

Service Level
 Agreements

Extracted 
Commonalities

Technical 
SLA

SLA 
Constraints

Placement 
Constraints

Done by [9]
Data Centre 

Operator and CPT

Insert information

Add more SLA constraints on the fly

Insert information

Figure 3. The development of constraints from natural 
language SLAs. 
In a first step we deconstructed those high level Service Level 
Objectives (SLOs) concerning their impact on low level technical 
metrics. As a result we have identified four main categories:  

• Hardware-,  
• QoS related-,  
• Availability-, and  
• Additional metrics.  

 

Within the first category all hardware related metrics like CPU 
frequency or RAM space is being captured. 



The second category (QoS) encapsulates factors like the 
maximum amount of VMs that share a single CPU core, or the 
bandwidth. In modern data centres these metrics are often defined 
by the Capacity Planning Team (CPT) gaining their knowledge 
from past experience. Guaranteeing a certain service execution 
time for instance needs extensive knowledge about the process 
itself and the interplay with hardware resources. However, if past 
experience has shown, that the CPU is the bottleneck the CPT can 
decide to restrict the number of VMs per core. [14] has pointed 
out that automatic transformation of SLOs to technical SLAs are 
also possible in specific situations, eliminating the needed 
involvement of the CPT. This technique is in general also 
applicable in combination with our approach. 

The availability of a service can in theory be used to shut down 
the services for specific time periods. However, in practice it 
heavily depends on the nature of the contract if a service provider 
really wants to make extensive use of these metrics. If service 
availability for instance is set to 99.9% the provider might not 
want to shut down the service for 0.1% of the time by purpose, as 
this might scare away his customers. Nevertheless, in a different 
scenario where a service can be shut down during weekends, the 
provider will certainly make use of it. Therefore, the third 
category was added to the XML schema.  

Last, the category “additional metrics” contains, for example, 
guarantees concerning access possibility (e.g. VPN) or the 
guarantee of a dedicated server. Dedicated server in this context 
means that only one VM can be hosted on a server and is not 
related to a set of VMs. Whether a server supports a special access 
possibility is captured within the FIT4Green meta-model and is 
therefore handled as an ‘attribute’ of a server.  

To conclude, the created technical XML schema can deal with all 
commonly known SLA metrics. However, as an addition we have 
created a second, low level placement schema with which the data 
centre operator can easily add “low level” constraints on the fly 
without writing a single line of code. It is based on the build-in 
placement constraints of entropy [13]. 

3.2.2 Constraint Programming and SLAs 
In order to be used within Entropy, the technical constraints 
provided by the DC operator need to be translated. In general two 
approaches on different levels of abstraction can be used for this 
purpose:  

• The higher level placement constraints with a pre-
selection process, and  

• The low level “posting”-method, which directly injects 
the rules and constraints to the Choco solver for 
consideration. 

 

The first technique was used for most of the hardware related 
metrics. In a pre-selection process a set of servers have been 
extracted that satisfy the hardware requirements, which again is 
used in combination with the placement constraint ‘fence’ 
allowing an allocation only to be performed on this set of servers.  

For the other metrics contained in the technical SLA, the low level 
“posting”-method is used in combination with the entropy model. 
It is more powerful and thus suitable for the creation of more 
complex constraints.  

In Table 1 the different CP-approaches and their correlations with 
the technical constraints are presented. Besides, the number of 
lines of code needed for the implementation of each constraint is 
provided. Here, the number in brackets allegorizes the number of 
Lines of Code (LoC) needed to, on one hand transform the model 

used in FIT4Green to the one used in entropy, and on the other 
hand the LoC needed for the pre-selection process. Those generic 
methods are used for a variety of constraints and therefore listed 
separately. 
Table 1. CP-Approach for Technical Constraints. 

 

3.3 POWER OBJECTIVE MODEL 
As a basis for our model we use a component called “Power 
Calculator”, which is also developed within the FIT4Green 
project and is being described in [15]. When provided with a 
description of the datacenter physical and dynamic elements, this 
component is able to simulate the power consumption of every 
part of the data center on a very fine level of granularity, in real 
time. While it is perfectly possible to call the Power Calculator 
component during the search of a reconfiguration plan, this has 
proven to be inefficient for our purpose. This is due to the 
complexity of the problem (NP-hard) as stated above. Here, we 
need to avoid calling the Power Calculator each time we are 
testing the placement of a VM in a server because this is very time 
consuming. As a result the CP engine must use a static version of 
the Power Calculator. This means that the necessary values are 
retrieved and stored in a vector before and not during the search 
and the engine has therefore all parameters directly “at hand”. 

In order to benefit from the fine granularity provided by the 
Power Calculator and at the same time gain from the advantages 
of CP programming we have used the following approach in our 
work. 

In a first step we have grouped all servers si into families Sk that 
share similar characteristics, where i ∈ I is the index of the server 
in the data centres, and k ∈ K is the index of the family. The VMs 
vi are also grouped into Vl families that share similar 
characteristics, where j ∈ J is the index of the VM in the data 
centres, and l ∈ L is the index of the family. Note that such an 
assumption is possible since it is common for a data centre to have 
families of similar equipment and because VMs often share 
similar run-time characteristics as well. 

Furthermore we have defined a vector Hi = <hi1, ... , hij, ... , hin> 
for each server si that denotes the set of VMs assigned to that 
server, where hij = 1 if the node si is hosting the VM vj and 0 
otherwise. The whole array H therefore represents how the VMs 

Category Constraint Approach LoC 
Hardware HDD Choco + ext. Entropy 121+(25) 

 CPUCores Entropy (‘fence’) 0+(25) 

 CPUFreq Entropy (‘fence’) 0+(25) 

 RAM Choco + ext. Entropy 123+(25) 

 GPUCores Entropy (‘fence’) 0+(25) 

 GPUFreq Entropy (‘fence’) 0+(47) 

 RAIDLevel Entropy (‘fence’) 0+(47) 

QoS MaxCPULoad Choco + ext. Entropy 90+(25) 

 MaxVLoadPerCore Choco + ext. Entropy 109+(25) 

 MaxVCPUPerCore Choco + ext. Entropy 124+(25) 

 Bandwidth Entropy (‘fence’) 0+(49) 

 MaxVMperServer Entropy (‘capacity’) 0+(25) 

Availability PlannedOutages Choco + ext. Entropy Future Work 

 Availability Choco + ext. Entropy Future Work 

Additional 
Metrics 

Dedicated Server Entropy (‘capacity’) 0 + (25) 

Access Entropy (‘fence’) 0 + (25) 

 



are assigned on servers in the different data centres. Now, the 
power consumed by server I depends on its physical components 
as well as on the set of VMs present:

 
),( vHsfP iii •=  (1) 

Here, f is the power consumption function provided by the Power 
Calculator. The dot is the vectorial product and v is the vector of 
all VMs. Thus, Hi • v is the vector representing all the VMs that 
are located on server i. 
Next, we extend the function by a factor representing the fact that, 
if there are no VMs on a server, it can be switched off meaning 
that it is not consuming any energy any more. For this purpose let 
Xi be a variable which has a value of 1 if there is at least one VM 
in a server i, 0 otherwise: 

⎩
⎨
⎧ =∈∃

=
otherwise

hJj
X ij
i ,0

1|,1
 (2) 

Then 

),(* vHsfXP iiii •=  (3) 

In the next step, the static version of the Power Calculator is 
included. Here, function f is split in two parts:  

• The calculation of the idle power of a server in the 
family Sk (i.e. power without any VM running), called 
Pidle(Sk). 

• The calculation of the power consumed by a VM in the 
family Vl if the latter is running on a server in the family 
Sk, called PVM (Sk, Vl). 

The idle power as well as the power per VM for each server can 
be computed before the search. Let α denote the vector of the idle 
powers of the families of servers, and β denotes the array of the 
power consumption per VM in each family: 

)( kidlek SP=α  (4) 

),( lkVMkl VSP=β  (5) 

Then we can obtain the static version of the server’s power by 
using the following equation: 

ki
VvlJj

klijkii SskhXP
lj

∈+= ∑
∈∈

|,**
|,

βα       (6) 

When P0 is the power of the data centre before the execution of 
the plan, as computed by the Power Calculator, then the power 
saved is calculated as: 

∑
∈

=
Ii

iPP1  (7) 

10 PPPsave −=  (8) 

As a last step to obtain the global energy figure of our solution, 
we need to integrate the cost of the network movements. For this 
purpose we first need to know which VMs are moving. This is 
done by subtracting the two matrixH0 (initial state of the data 
centre) and H1 (final state of the data centre), and analyzing the 
resulting matrix. We obtain a vector of the moves Mk = < (Sfrom, 

Sto)VM1, … , (Sfrom, Sto)VMk, … , (Sfrom, Sto)VMn>, where Sfrom and Sto 
are the source and destination servers of the VM, respectively and       
k ∈ [1..n] is the index of the VM. 

We can retrieve the energy cost of a move, providing the 
characteristics of the source server, the destination server and the 
VM from the power calculator. This cost includes the energy 
spent by moving the VM through the network, but can also 
include the overhead incurred in term of CPU load and RAM IO. 

Emove k = EnergyCost(si, sj, vk) (9) 

Here, i and j are the indexes of the source and destination servers 
of the VM vk, respectively. We obtain the energy cost of the plan 
by summing the cost of every movement: 

∑
∈

•=
Kk

kk MEmoveEmove  (10) 

If we know the end time of a VM, we can compute its remaining 
life time (LT). This information can be combined with the cost of 
the network and equation (8), to get the total energy saving that 
we can expect by moving a VM: 

kkkkk EmoveLTPPE −×−= )( 10  (11) 

The global energy saved by the plan, at federation level is 
therefore: 

∑
∈

=
Kk

ktotal EE
 

(12) 

In practice, these energy formulas are written in the Choco 
modeling language within the “Power Objective” component of 
our framework. 

3.4 HEURISTICS 
As mentioned previously computing a solution for the VRSP 
using the Optimizer may be time consuming for large 
infrastructures as selecting a satisfying server for each running 
VMs while maximizing the infrastructure energy efficiency is a 
NP-Hard problem. A CP solver, such as Choco, provides a 
customizable branching heuristic to guide the solver to a solution. 
A branching heuristic indicates an order to instantiate the 
variables and a value to try for each variable. For a given problem, 
the branching heuristic helps the solver by indicating variables 
that are critical to compute a solution and values that are supposed 
to be the best. A branching heuristic is then highly coupled with 
the exact objective of the problem as it relies to the variables 
semantic, an information that is initially out of the CP solver 
concern. For the Optimizer, the branching heuristic helps at 
instantiating the variables in a priority descending order denoting 
the VM placement to a value that point to an energy-efficient 
server. In practice, VMs are sorted in the increasing order of their 
energy efficiency and the solver will try to place each VM to a 
server that will provide the best energy gain. The energy gain is 
provided by the variable Ek described in the last section. As this 
metric includes both the energy cost of the VM on its destination 
server and the energy cost related to its migration, this approach 
tends also to reduce the number of migrations to a minimum to 
provide a fast reconfiguration process. 



4. FRAMEWORK EVALUATION 
In this section we first evaluate the energy saving due to our 
approach on a cloud testbed hosting workload inspired by a 
corporation. We then evaluate the scalability of the Optimizer. 

4.1 Experiments on Cloud Testbed 
In order to validate the proposed approach in an environment as 
close as possible to a cloud data centre, a trial has been performed 
at Hewlett Packard (HP) Italy Innovation Center facilities, inside 
the Cloud Computing Initiative lab environment. The facility is 
used to offer “hands-on” experience on a cloud demo 
infrastructure and to setup Proof of Concepts (PoC) 
configurations. 

Two different workloads have been setup for an Infrastructure-as-
a-Service private cloud: the first one simulates a typical week load 
pattern and a second one – more challenging – focuses on a single 
work day. 

4.1.1 Lab trial resources 
Inside HP Italy Innovation Center, two racks, with an HP C7000 
blade enclosure each, have been used to simulate two separate 
data centres; the first one (DC1) has 4 BL 460c blades dedicated 
to host Virtual Machines using VMWare ESX v4.0 native 
hypervisor, and 3 additional blades for Cluster and Cloud Control, 
and the scheduler of the workload tasks (VM creation and load 
generation). The second one (DC2) hosts 3 BL460c blades to host 
Virtual Machines again using VMWare ESX v4.0 native 
hypervisor, and 2 other blades for Cluster Control and the Data 
Collector of the Power and Monitoring System. The racks are 
connected to a LAN and use a SAN device to store all data, 
including VM images. The Virtual Connect modules inside the 
Blade enclosures offer a fast internal 1GB network. 
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Figure 4. The logical view of the main hardware resources. 

The characteristics of the processors in the two racks/enclosures 
are listed in Table 2. 

4.1.2 Workload 
The system has been tested using two synthetic workloads built to 
reply with high accuracy to the load patterns recorded in a real 
case PoC. The next figure represents the pattern of total number of 
active virtual machines during full week of work inside a small-
medium size private cloud used by a corporation in Italy during a 
Proof of Concept performed with HP Innovation Center in Italy. 
The first synthetic test reproduces the 7 days compressed in time 
into 24 hours, while the second one focuses only on a single work 

Table 2. Characteristics of the Racks/Enclosures. 

 Enclosure 1 Enclosure 2 

Processor model Intel Xeon E5520 Intel Xeon E5540 

CPU frequency 2.27GHz 2.53GHz 

Cpu& Cores Dual cpu – Quad 
core 

Dual cpu – Quad 
core 

RAM 24 GB 24GB 

 

day has been reproduced in 12 hours. The following picture 
schematically describes the weekly load pattern (number of active 
VMs on the Y axis) and the red box identifies the single work day 
for the second test. 
 

 

Figure 5. Schematic View on the Weekly load patterns. 
 

The first workload considers also week-ends with low load, but 
it’s an interesting approximation of a real case; the second one is 
more challenging and therefore it has been used more extensively 
in the federated trial. The workload execution is performed 
through an open source scheduler application (Task Scheduler – 
running inside a VM on the blade server in DC1), while system 
and power monitoring is performed through open source Collectd 
(inside another VM on blade server in DC2). 

The explicit SLAs configured in the trial – and mapped into 
constraints – are related to the Number of Virtual CPUs per Core 
ratio (2 in the trial) and to the description of the topology of nodes 
in the federation. The parameters related to policies applied to the 
data centres are the same on each clusters: i.e. always guarantee at 
least 3 free ‘VM slots’, where a ‘VM slot’ is the necessary amount 
of free resources to accommodate a new VM, and keep at most 6 
VM slots. 

4.1.3 Single Site Trial 
The trial for a Single Site scenario has been performed using only 
the first rack (DC1) and both workloads. The Task Scheduler 
allocates VMs through Cloud and Cluster Controller primitives 
only the nodes in DC1; data collection for power and system 
monitoring runs on a blade server in DC2. Table 3 shows the 
results in terms of overall energy consumed by the node 
controllers (the servers with native hypervisors where VMs are 
allocated); due to the lab-grade configuration, the number of cloud 
control servers (cloud and cluster controller, monitoring and 
scheduler) wrt. node controllers is far too high compared to a real 
cloud environment, therefore cloud control servers have been 
omitted from the computation to allow a clearer interpretation of 
the results. For test 1, the energy data refer to the average 
consumption per day of 4 node controllers inside DC1. 
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Table 3. Single Site Trial. 

Scenario Average Day for 
Week Workload 

Single work day 
workload 

Without FIT4Green  6029 Wh 6621 Wh 

With FIT4Green – 
no migration 

4867 Wh saving 
19.2% 

5938 saving 
10.3% 

With FIT4Green – 
using migration 

4592 Wh saving 
23.8% 

5444 saving 
17.7% 

 

The trial shows an energy saving of approximately 24% in the 
average week workload, and almost 18% for the week day 
workload. As expected the second workload is more challenging 
than the first one, moreover the effect of VM migration capability 
for the optimization strategy is very important, especially in the 
most critical case. 

After the runs, the monitored system data are analyzed to double 
check that the specified SLAs have not been violated. 

4.1.4 Federated Sites Trial 
The trial for the federated case has been performed using a data 
centre hosting one cluster of 4 nodes, and the second data centre 
hosting another independent cluster of 3 nodes. The workload for 
the first data centre is the same one as the single work day test of 
the single site case, while the workload for the second data centre 
is scaled by a factor ¾ (to cope with the smaller amount of 
computing resources) and has its peak shifted in time of approx. 
1/24 in the time scale (1 hour in the 24 hours scenario) to simulate 
a slight work-time differences of the users of the second data 
centre. 
Results have been collected in different configurations: 

• Without FIT4Green with independent allocation of the 
workload on the two DCs (clusters); each workload item 
has been statically pre-assigned to one cluster 

• With FIT4Green with independent allocation of the 
workload on the two DCs (clusters) 

• With FIT4Green with dynamic allocation of the 
workload on the two DCs (clusters); when a workload 
item needs to be started FIT4Green is queried to decide 
on which cluster to run it 

• FIT4Green with dynamic allocation of the workload on 
the two DCs (clusters) and optimized policies; in this 
case the “buffer” of free slots of each cluster has been 
reduced capitalizing on the availability of additional 
resources in the other cluster – practically the minimum 
VM slot number has been reduced to 2 and the 
maximum to 5 on each cluster because the VM 
allocation can be satisfied by any one of the clusters 

Table 4 presents, for the different configurations, the numerical 
results in term of global energy consumed by each datacenter 
node controllers (cluster nodes) and the total for the federation. 

In the case of FIT4Green Static Allocation each data centre is 
considered separately, in the next case allocation is decided based 
on the energy saving optimizations. The ability to use the 
federation as a single pool of resources at allocation time allows 
saving to grow from 16.7% to 18.5%. Moreover the tuning of 
policies reducing the free amount of resources (min. VM slots) to 
be kept free to cope with load peaks at cluster level, allows saving 
to grow up to 21.7%. 

Table 4. Federated Sites Trial. 

Configuration Data 
Centre 1 

Data Centre 
2 

Energy for 
Federation 

Without 
FIT4Green 

6350 Wh 4701 Wh 11051 Wh 

With FIT4Green 
Static Allocation 

5190 Wh 4009 Wh 9199 Wh 
Saving 16.7% 

With FIT4Green 
Dynamic 
Allocation 

5068 Wh 3933 Wh 9001 Wh 
Saving 18.5% 

With FIT4Green 
Optimized Policies 

4860 Wh 3785 Wh 8645 Wh 
Saving 21.7% 

 

4.1.5 Energy vs. Emissions Optimization 
In the previous tests the two data centres were assumed to have 
exactly the same characteristics in terms of energy and emissions 
efficiency (as in the reality, since they’re co-hosted in the same 
site). The goal is to evaluate the effectiveness of the optimizer 
when dealing with a federation of data centres heterogeneous with 
respect to energy and emissions efficiencies. 

In order to simulate the scenario with data centres with different 
energy and emissions features, the last test has been run in two 
additional work modes, by modifying the meta-model Power 
Usage Effectiveness (PUE) and Carbon Usage Effectiveness 
(CUE) attributes of the data centre configuration: 

• DC1 with PUE=2.1 and DC2 with PUE=1.8 (more 
efficient) – optimizing for total energy of the federation 

• DC1 with CUE=0.772 g/Wh and DC 2 with CUE=0.797 
g/Wh – optimizing for to total emissions of the 
federation; the two values for CUE simulate DC1 
getting energy by Enel at 443 CO2 g/kWh and DC2 gets 
energy by A2A at CO2 368 g/kWh. 

Figure 6 reports the final test results for the various configurations 
in visual format, while Table 5 contains the corresponding 
numerical values. 

 
Figure 6. Graphical Representation of the Trial Results. 



It’s worth to notice that when FIT4Green optimizes for Energy, it 
saves 0.6% more in addition to the ICT energy optimization, 
because it’s capitalizing on the energy efficiency difference of the 
two data centres, by relatively loading more DC2 that has a better 
PUE value.  

When optimizing for Emissions, DC1 is relatively more loaded 
because it has better emissions efficiency (lower value of CUE) 
and the total improvement is 0.6% better than the ICT energy 
optimization case. 

Table 5. Energy vs. Emissions. 

Configuration ICT 
Energy 
DC 1 

ICT 
Energy 

DC2 

Total 
Energy 

Total 
Emissions 

Without 
FIT4Green 

19050 
Wh 

14103 
Wh 

65390 
Wh 

25.94 g 
CO2 

FIT4Green 
optimize ICT 

Energy, ignore 
PUE and CUE 

15486 
Wh 

11663 
Wh 

53514 
Wh 

Saving 
18.16% 

21.25 g 
CO2 

Saving  
18.10% 

FIT4Green 
optimize Total 

Energy, 
considering 

PUE 

14188 
Wh 

12953 
Wh 

53110 
Wh 

Saving 
18.78% 

21.27 g 
CO2 

Saving 
17.99% 

FIT4Green 
optimize 

Emissions, 
considering 

CUE 

17381 
Wh 

9624 
Wh 

53823 
Wh 

Saving 
17.68% 

21.08 g 
CO2 

Saving 
18.72% 

 

4.2 Scalability Evaluation 
In order to show the correctness of our approach with a high 
number of servers and VMs, we made experimentation in 
simulation as a complement to the experimentation done within 
HP premises. Indeed, while the experimentation has been done on 
real equipment for a low number of servers, high scale 
experimentation can only be done through simulation from a 
practical point of view. 

The simulation has been run using a DELL Latitude E6410 laptop 
with an Intel i7 Dual Core processor at 2.67GHz and 4GB of 
RAM. For the simulation we have varied the number of servers, 
with each server having 1 CPU with 4 cores at 1GHz, 8GB of 
RAM and 4 virtual machines instances already activated on it.  

Each VM has 1 Virtual CPU used at 70%. The memory used by 
the VMs is set to 100MB. For each simulation run, we measured 
the time taken by the search to find a first solution and verified it 
for all the VMs and given the constraints. We have repeated the 
experiment 3 times: with one datacenter and no placement 
constraints, with one datacenter with an overbooking factor 
constraint set to 2, and with two federated datacenters.  

In Table 6 the placement constraints activated to realize each 
configuration is detailed. With one datacenter, no placement 
constraint is activated: the VMs are free to move in the datacenter, 
they just need to respect the default constraints that enforces that a 
valid configuration is found with respect to the consumption of 
the VM in term of CPU, RAM and HDD and the available 
resources on the servers. The “overbooking factor” set to 2 
corresponds to a constraint called “MaxVCPUPerCore”, which 

enforces that no more than 2 virtual CPU is attributed to one core. 
The “2 federated datacenters” configuration is translated into 
« Fences » constraints disallowing the VMs to migrate from one 
datacenter to another, which is usually not feasible in practice. 

Table 6. Constraints activated in each configuration. 

# Configuration Placement constraints activated 

1 1 datacenter none 

2 1 datacenter 
with overbooking factor=2 

“MaxVCPUPerCore” 
constraint set on each server 

3 2 federated datacenters “Fence” constraint set on each 
VM 

 

Table 7. Solving duration of the Optimizer to compute the 
first solution. 

number 
of 

servers 

1 datacenter 
(ms) 

1 datacenter 
with Overbooking 

factor=2 (ms) 

2 federated 
datacenters (ms) 

25 301 401 200 

50 801 701 501 

100 2504 1802 901 

200 14214 10644 2810 

250 25727 18718 4504 

300 44152 29533 7004 

400 87443 64095 14757 

500 162207 120885 26630 

600 269487 194193 42409 

700 403893 307067 63671 

 

 
Figure 7. Graphical representation of the Optimizer’ solving 

duration to compute the first solution. 
First of all, the results presented in Table 7 show that for 700 
servers and 2800 VMs the search completes in 6.7 minutes on the 
worst case. If the servers are split in two datacenters, the time 
drops to nearly 1 minute. Interestingly enough, adding new 



constraints don’t increase the search time as one could expect: 
globally the search times are inferior with the placement 
constraints activated to the ones without. This is because adding 
new constraints, while it adds a small overhead in processing the 
constraint, also greatly reduces the problem search space. This 
shows that the engine prunes incorrect sub-trees in the search tree 
using the new constraints. For example in the Table 7 we see that 
the time for 400 servers split in 2 DC (14757ms) is nearly equal to 
the time in single DC for 200 servers (14214 ms). The times show 
that the engine is effectively separating the problem in 2, and that 
the two are then computed in parallel. The little time difference 
may be due to the overhead of parallel computing and the slightly 
increased time for the preparation the problem. The result would 
be the same if the VMs are separated in two clusters in the same 
data centre, which is also a common practice. The addition of the 
overbooking constraint reduces also the time, for the same 
reasons. 

5. CONCLUSION 
In this paper we have presented an approach for energy-aware 
resource allocation in datacenters using constraint programming. 
We addressed the problem of extensibility and flexibility by 
decoupling constraints and algorithms. Using this feature and 
easy-to-extend XML schemas, we were able to implement 16 
frequently used SLA parameters in the form of constraints. The 
results of the tests executed in a cloud environment have shown 
that the presented approach is capable of saving both a significant 
amount of energy and CO2 emissions in a real world scenario on 
average 18%within our test case. Furthermore, our scalability 
experiment showed that splitting the problem in several parts to 
enable parallel computation is very efficient in reducing the total 
computation time to find a solution. Indeed, we were able to find 
the first allocation solution for 2800 VMs in 700 servers split in 
two clusters in approximately 1 minute. 

6. FUTURE WORK 
Encouraged by the results of our test we will continue our 
research in this area. One enhancement will address the research 
in the area of SLAs. Even though current metrics do not directly 
relate to energy saving or environmental metrics, they play a 
major role in the process of energy saving strategies. As 
mentioned in [12] a key in lowering the energy consumption in 
data centres, without replacing hardware- or infrastructural-
components, is to tweak SLAs in a way that guarantee the needed 
QoS for the customer, but at the same time widening the range of 
flexibility for the data centre operator to apply certain energy 
saving strategies. For that reason, in order to apply this approach 
the fixed structures of current SLAs either need to be enhanced by 
the possibility to express preferences in a “fuzzy” manner or to 
use a dynamic, preferable autonomous, re-negotiation process by 
using software agents, for instance (www.all4green-project.eu).  
In the context of FIT4Green we do neither replace a complete data 
centre management framework nor postulate agent based SLA 
negotiation. Therefore, the first approach is more appropriate. In 
the context of our framework this concludes in the extension of 
entropy to use so called soft constraints. In addition Klingert et. al. 
in [12] mention the need for new ‘green’ metrics. In the current 
state the entropy library provides only a limited model of the data 
centre infrastructure and VMs. Therefore, we will additionally 
explore the needs of new ‘green’ metrics in a technical aspect. 

Besides the consideration of GreenSLAs we plan to investigate 
new heuristics and algorithms to first improve the efficiency of 
the optimizer and second the quality of the proposed solutions. 
We also plan to extend the concepts developed in this paper to 

other components involved in delivering an Internet service, suc 
as the network. 
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