

An Energy Aware Framework for Virtual Machine Placement in Cloud Federated Data Centres

Corentin Dupont

Authors: Corentin Dupont (Create-Net); Giovanni Giuliani (HP Italy); Fabien Hermenier (INRIA); Thomas Schulze (Uni Mannheim); Andrey Somov (Create-Net)

"FIT4Green expects to provide at least 20% saving in direct server and network devices energy consumption (with respect to a traditionally managed data centre) and induce an additional 30% saving due to reduced cooling needs"

- ✓ FIT4Green seeks energy saving policies for DCs, enhancing the
 effects inside a federation by an aggressive strategy for
 reducing the energy consumption in ICT
- ✓ We aim at reducing cost for companies → Strengthening competitive position
- ✓ FIT4Green needs to be DC framework agnostic:
 - Demonstrated in Cloud computing, Traditional computing, Super computing and Networking

- ✓ Introduction
- √ Requirements
- ✓ Framework design
- ✓ SLA Constraints
- ✓ Power Objective Model
- ✓ Heuristics
- Experiments on Cloud Test-bed
- ✓ Scalability Evaluation
- ✓ Conclusion & Future work

The policies seek to:

Consolidate application/services and turn unused servers off.

Relocate application/services to efficient servers

The strategies are ranked through their Energy KPIs

Single allocation

Find the most energy efficient and suitable resource for a **new Workload**.

Global optimization

Rearrange the resources in a way that saves maximum amount of energy or carbon emission.

- Flexibility, extensibility
- Deep exploration of the search space

Abstracting out the constraints

SLA constraints flow

SLA constraints examples

Category	Constraint	Approach	LoC
Hardware	HDD	Choco + ext. Entropy	121+(25)
	CPUCores	Entropy ('fence')	0+(25)
	CPUFreq	Entropy ('fence')	0+(25)
	RAM	Choco + ext. Entropy	123+(25)
	GPUCores	Entropy ('fence')	0+(25)
	GPUFreq	Entropy ('fence')	0+(47)
	RAIDLevel	Entropy ('fence')	0+(47)
QoS	MaxCPULoad	Choco + ext. Entropy	90+(25)
	MaxVLoadPerCore	Choco + ext. Entropy	109+(25)
	MaxVCPUPerCore	Choco + ext. Entropy	124+(25)
	Bandwidth	Entropy ('fence')	0+(49)
	MaxVMperServer	Entropy ('capacity')	0+(25)
Availability	PlannedOutages	Choco + ext. Entropy	Future Work
	Availability	Choco + ext. Entropy	Future Work
Additional Metrics	Dedicated Server	Entropy ('capacity')	0 + (25)
	Access	Entropy ('fence')	0 + (25)

POWER OBJECTIVE MODEL

Root node: no VM is allocated

At each level: call F4G branching heuristic. If a constraint is broken, backtrack to go up.

First level node: VM1 allocated on S1

First level node: VM2 allocated on S1

First level node: VMx allocated on Sy

At leaf level: note down the solution and the energy saved, then backtrack to find a better solution.

Leaf node: all VMs are allocated

Leaf node: all VMs are allocated

Composable heuristics

 Candidate VM for migration

 Target server for migration

 Candidate Server for extinction

To sum up...

Experiments on Cloud Testbed

Lab trial ressources

	Enclosure 1	Enclosure 2	
Processor model	Intel Xeon E5520	Intel Xeon E5540	
CPU frequency	2.27GHz	2.53GHz	
Cpu& Cores	Dual cpu – Quad core	Dual cpu – Quad core	
RAM	24 GB	24GB	

- DC1: 4 BL 460c blades using VMWare ESX v4.0 native hypervisor, 3 blades for Cluster and Cloud Control
- DC2: 3 BL460c blades using VMWare ESX v4.0 native hypervisor, 2 blades for Cluster Control and Power and Monitoring System.

Experiments on Cloud Testbed

Lab trial Workload

Total number of active virtual machines during full week of work

Active SLAs constraints:

- Max vCPU per core = 2
- Min VM Slot = 3
- Max VM Slot = 6

Experiments on Cloud Testbed

Final test results for the various configurations

Configuration	Data	Data	Energy for
configuration		Centre 2	0.
Without FIT4Green	6350 Wh	4701 Wh	11051 Wh
W i t h FIT4Green S t a t i c Allocation	5190 Wh	4009 Wh	9199 Wh Saving 16.7%
W i t h FIT4Green D y n a m i c Allocation	5068 Wh	3933 Wh	9001 Wh Saving 18.5%
W i t h FIT4Green Optimized Policies	4860 Wh	3785 Wh	8645 Wh Saving 21.7%

Scalability Evaluation

#	Configuration	Placement constraints activated
1	1 datacenter	none
2	1 datacenter with overbooking factor=2	"MaxVCPUPerCore" constraint set on each server
3	2 federated datacenters	"Fence" constraint set on each VM

FIT4 GREEN

CONCLUSION & FUTURE WORK

- Energy aware resource allocation in datacenters
- ✓ Flexibility & extensibility
- ✓ Saves up to 18% in HP experiment
- Scalability with parallel processing
- ✓ Future work:
 - √ SLA re-negotiation
 - √ Green SLAs

Thanks for your attention

Any Question?

